

EPIC Motherboard Supports Intel® Core™2 Duo CPU, VGA/LVDS/HDMI/HDTV-out, Dual GbE, USB 2.0 and Second Generation SATA 3Gb/s, RoHS Compliant

User Manual

Revision

Date	Version	Changes
5 May, 2010	1.00	Initial release

Copyright

COPYRIGHT NOTICE

The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

TRADEMARKS

All registered trademarks and product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective owners.

Table of Contents

1 INTRODUCTION	1
1.1 Introduction	2
1.2 Connectors	
1.3 DIMENSIONS	4
1.4 Data Flow	5
1.5 TECHNICAL SPECIFICATIONS	6
2 UNPACKING	8
2.1 Anti-static Precautions	9
2.2 Unpacking Precautions	9
2.3 PACKING LIST	10
2.3.1 Optional Items	11
3 CONNECTORS	12
3.1 Peripheral Interface Connectors	
3.1.1 NANO-GM45A2 Layout	
3.1.2 Peripheral Interface Connectors	
3.1.3 External Interface Panel Connectors	
3.2 Internal Peripheral Connectors	
3.2.1 ATX Power Supply Enable Connector	
3.2.2 Audio Connector	
3.2.3 Backlight Inverter Connector	
3.2.4 12V Power Connector	
3.2.5 Fan Connectors	
3.2.6 Front Panel Connector	
3.2.7 IEEE 1394a Connectors	
3.2.8 LVDS LCD Connector	
3.2.9 PCIe Mini Card Slot	
3.2.10 SATA Drive Connectors	
3.2.11 SATA Power Connector (+5V)	
3.2.12 Serial Port Connectors (COM 1 ~ COM 4)	26

	3.2.13 SPI Flash Connector	28
	3.2.14 TV Out Connector	28
	3.3 EXTERNAL PERIPHERAL INTERFACE CONNECTOR PANEL	29
	3.3.1 HDMI Connector	30
	3.3.2 LAN Connectors	31
	3.3.3 USB Connectors	32
	3.3.4 VGA Connector	32
4	INSTALLATION	34
	4.1 Anti-static Precautions	35
	4.2 Installation Considerations	36
	4.2.1 Installation Notices	36
	4.2.2 Installation Checklist	37
	4.3 Unpacking	38
	4.4 CPU, CPU COOLING KIT AND SO-DIMM INSTALLATION	38
	4.4.1 Socket P CPU Installation	38
	4.4.2 Socket P Cooling Kit Installation	40
	4.4.3 SO-DIMM Installation	. 41
	4.5 Jumper Settings	42
	4.5.1 AT Power Select Jumper Settings	43
	4.5.2 Clear CMOS Jumper	. 44
	4.5.3 LVDS Panel Resolution Jumper	45
	4.5.4 LVDS Voltage Selection	47
	4.6 Chassis Installation	48
	4.6.1 Airflow	. 48
	4.6.2 Motherboard Installation	48
	4.7 Internal Peripheral Device Connections	48
	4.7.1 AT Power Connection	. 49
	4.7.2 ATX Power Connection	50
	4.7.3 Audio Kit Installation	. 54
	4.7.4 SATA Drive Connection	55
	4.8 EXTERNAL PERIPHERAL INTERFACE CONNECTION	56
	4.8.1 LAN Connection (Single Connector)	56
	4.8.2 USB Connection (Dual Connector)	. 57
	183 VGA Monitor Connection	5.8

4.9 SOFTWARE INSTALLATION	59
5 BIOS SCREENS	61
5.1 Introduction	62
5.1.1 Starting Setup	62
5.1.2 Using Setup	62
5.1.3 Getting Help	63
5.1.4 Unable to Reboot After Configuration Changes	63
5.1.5 BIOS Menu Bar	63
5.2 Main	64
5.3 Advanced	65
5.3.1 CPU Configuration	66
5.3.2 IDE Configuration	67
5.3.2.1 IDE Master, IDE Slave	69
5.3.3 AHCI Configuration	73
5.3.3.1 AHCI Port n	74
5.3.4 Remote Access Configuration	75
5.3.5 USB Configuration	<i>7</i> 8
5.3.6 Power Configuration	79
5.3.7 Super IO Configuration	81
5.4 PCI/PnP	83
5.5 Boot	86
5.5.1 Boot Settings Configuration	86
5.6 Security	88
5.7 Chipset	89
5.7.1 Northbridge Configuration	90
5.7.2 Southbridge Configuration	92
5.8 Exit	93
A BIOS MENU OPTIONS	95
B ONE KEY RECOVERY	98
B.1 ONE KEY RECOVERY INTRODUCTION	99
B.1.1 System Requirement	99
B.1.2 Supported Operating System	
B.2 INITIAL SETUP PROCEDURE FOR WINDOWS	101

B.2.1 Hardware and BIOS Setup	
B.2.2 Create Partitions	
B.2.3 Build-up Recovery Partition	
B.2.4 Create Factory Default Image	
B.3 INITIAL SETUP PROCEDURE FOR LINUX	112
B.4 RECOVERY TOOL FUNCTIONS	116
B.4.1 Factory Restore	117
B.4.2 Backup System	118
B.4.3 Restore Your Last Backup	119
B.4.4 Manual	
C TERMINOLOGY	121
D WATCHDOG TIMER	126
E COMPATIBILITY	129
E.1 COMPATIBLE OPERATING SYSTEMS	130
E.2 COMPATIBLE PROCESSORS	131
E.3 COMPATIBLE MEMORY MODULES	
F HAZARDOUS MATERIALS DISCLOSURE	133
F.1 HAZARDOUS MATERIAL DISCLOSURE TABLE FOR IPB PRODUC	CTS CERTIFIED AS ROHS
COMPLIANT UNDER 2002/95/EC WITHOUT MERCURY	

List of Figures

Figure 1-1: NANO-GM45A2	2
Figure 1-2: Connectors	3
Figure 1-3: NANO-GM45A2 Dimensions (mm)	4
Figure 1-4: Data Flow Block Diagram	5
Figure 3-1: Connector and Jumper Locations	13
Figure 3-2: ATX Power Supply Enable Connector Location	15
Figure 3-3: Audio Connector Location	16
Figure 3-4: Panel Backlight Connector Pinout Locations	17
Figure 3-5: CPU 12V Power Connector Location	18
Figure 3-6: +12V Fan Connector Locations	19
Figure 3-7: Front Panel Connector Location	20
Figure 3-8: IEEE 1394a Connector Locations	21
Figure 3-9: LVDS LCD Connector Pinout Location	22
Figure 3-10: PCIe Mini Card Slot Location	23
Figure 3-11: SATA Drive Connector Locations	25
Figure 3-12: 5V Power Connector Locations	26
Figure 3-13: COM Connector Pinout Location	27
Figure 3-14: SPI Flash Connector	28
Figure 3-15: TV Connector Pinout Location	29
Figure 3-16: NANO-GM45A2 External Peripheral Interface Connector	30
Figure 3-17: RJ-45 Ethernet Connector	31
Figure 3-18: VGA Connector	33
Figure 4-1: Make sure the CPU socket retention screw is unlocked	39
Figure 4-2: Lock the CPU Socket Retention Screw	40
Figure 4-3: Cooling Kit Support Bracket	41
Figure 4-4: SO-DIMM Installation	42
Figure 4-5: AT Power Select Jumper Location	44
Figure 4-6: Clear CMOS Jumper	45
Figure 4-7: LVDS Panel Resolution Jumper Pinout Locations	46
Figure 4-8: LVDS Voltage Selection Jumper Pinout Locations	48
Figure 4-9: Power Cable to Motherboard Connection	49

Figure 4-10: Connect Power Cable to Power Supply	50
Figure 4-11: Power Cable to Motherboard Connection	51
Figure 4-12: Connect Power Cable to ATX Adapter Cable	52
Figure 4-13: Connect ATX Power Adapter Cable to Power Supply	53
Figure 4-14: Connect ATX Power Cable to Motherboard	53
Figure 4-15: Audio Kit Cable Connection	54
Figure 4-16: SATA Drive Cable Connection	55
Figure 4-17: SATA Power Drive Connection	56
Figure 4-18: LAN Connection	57
Figure 4-19: USB Connector	58
Figure 4-20: VGA Connector	59
Figure 4-21: Introduction Screen	60
Figure 4-22: Available Drivers	60
Figure B-1: Recovery Tool Setup Menu	103
Figure B-2: Command Mode	103
Figure B-3: Partition Creation Commands	104
Figure B-4: System Configuration for Windows	105
Figure B-5: Build-up Recovery Partition	106
Figure B-6: Press any key to continue	106
Figure B-7: Press F3 to Boot into Recovery Mode	107
Figure B-8: Recovery Tool Menu	107
Figure B-9: About Symantec Ghost Window	108
Figure B-10: Symantec Ghost Path	108
Figure B-11: Select a Local Source Drive	109
Figure B-12: Select a Source Partition from Basic Drive	109
Figure B-13: File Name to Copy Image to	110
Figure B-14: Compress Image	110
Figure B-15: Image Creation Confirmation	111
Figure B-16: Image Creation Complete	111
Figure B-17: Image Creation Complete	111
Figure B-18: Press Any Key to Continue	112
Figure B-19: Partitions for Linux	113
Figure B-20: System Configuration for Linux	114
Figure B-21: Access menu.lst in Linux (Text Mode)	114
Figure B-22: Recovery Tool Menu	115

Figure B-23: Recovery Tool Main Menu	116
Figure B-24: Restore Factory Default	117
Figure B-25: Recovery Complete Window	118
Figure B-26: Backup System	118
Figure B-27: System Backup Complete Window	119
Figure B-28: Restore Backup	119
Figure B-29: Restore System Backup Complete Window	120
Figure B-30: Symantec Ghost Window	120

List of Tables

Table 1-1: Technical Specifications	7
Table 3-1: Peripheral Interface Connectors	14
Table 3-2: Rear Panel Connectors	14
Table 3-3: ATX Power Supply Enable Connector Pinouts	15
Table 3-4: Audio Connector Pinouts	16
Table 3-5: Panel Backlight Connector Pinouts	17
Table 3-6: CPU 12V Power Connector Pinouts	18
Table 3-7: +12V Fan Connector Pinouts	19
Table 3-8: Front Panel Connector Pinouts	20
Table 3-9: IEEE 1394a Connector Pinouts	21
Table 3-10: LVDS LCD Port Connector Pinouts	23
Table 3-11: PCle Mini Card Slot Pinouts	24
Table 3-12: SATA Drive Connector Pinouts	25
Table 3-13: 5V Power Connector Pinouts	26
Table 3-14: COM Connector Pinouts	28
Table 3-15: SPI Flash Connector	28
Table 3-16: TV Port Connector Pinouts	29
Table 3-17: HDMI Connector Pinouts	30
Table 3-18: LAN Pinouts	31
Table 3-19: RJ-45 Ethernet Connector LEDs	31
Table 3-20: USB Port Connector Pinouts (USB1_2)	32
Table 3-21: USB Port Connector Pinouts (USB3_4)	32
Table 3-22: VGA Connector Pinouts	33
Table 4-1: Jumpers	43
Table 4-2: AT Power Select Jumper Settings	43
Table 4-3: Clear CMOS Jumper Settings	45
Table 4-4: LVDS Panel Resolution Jumper Settings	46
Table 4-5: LVDS Voltage Selection Jumper Settings	47
Table 5-1: BIOS Navigation Keys	63

List of BIOS Menus

BIOS Menu 1: Main	64
BIOS Menu 2: Advanced	66
BIOS Menu 3: CPU Configuration	66
BIOS Menu 4: IDE Configuration	67
BIOS Menu 5: IDE Master and IDE Slave Configuration	69
BIOS Menu 6: AHCI Configuration	74
BIOS Menu 7: AHCI Port n Configuration Menu	75
BIOS Menu 8: Remote Access Configuration	76
BIOS Menu 9: USB Configuration	78
BIOS Menu 10: APM Configuration	80
BIOS Menu 11: Super IO Configuration	81
BIOS Menu 12: PCI/PnP Configuration	84
BIOS Menu 13: Boot	86
BIOS Menu 14: Boot Settings Configuration	86
BIOS Menu 15: Security	88
BIOS Menu 16: Chipset	90
BIOS Menu 17:Northbridge Chipset Configuration	90
BIOS Menu 18:Southbridge Chipset Configuration	92
BIOS Menu 19:Exit	94

Chapter

1

Introduction

1.1 Introduction

Figure 1-1: NANO-GM45A2

The NANO-GM45A2 EPIC motherboard is a Socket P Intel® Core[™]2 Duo processor with 1066/800 MHz Front Side Bus (FSB) and Intel® Celeron® M processor with 667 MHz FSB platform.

Up to two 2.0 GB 1066 MHz or 800 MHz un-buffered DDR3 SDRAM SO-DIMM are supported by the Intel® GM45 graphics memory controller hub (GMCH). The Intel® GM45 GMCH also supports 18-bit or 24-bit dual-channel LVDS, analog CRT, HDMI and HDTV output.

The integrated Intel® ICH9M I/O controller hub (ICH) supports two SATA 3Gb/s drives with data transfer speeds of 3.0 Gbps. Four USB 2.0 channels and one expansion PCIe mini socket provide flexible expansion options. High Definition Audio (HDA) support ensures HDA devices can be easily implemented on the NANO-GM45A2.

1.2 Connectors

The connectors on the NANO-GM45A2 are shown in the figure below.

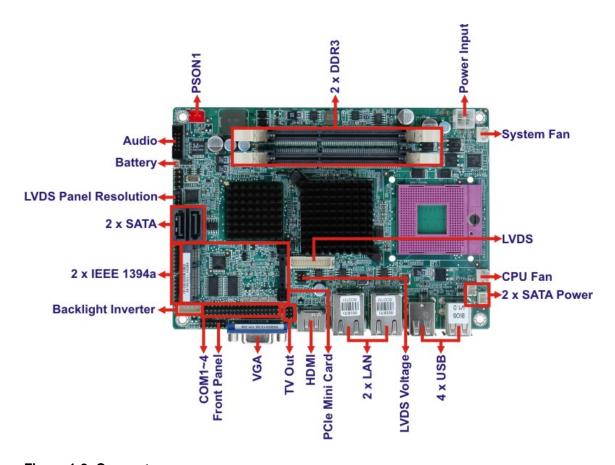


Figure 1-2: Connectors

1.3 Dimensions

The dimensions of the board are listed below:

Length: 115 mmWidth: 165 mm

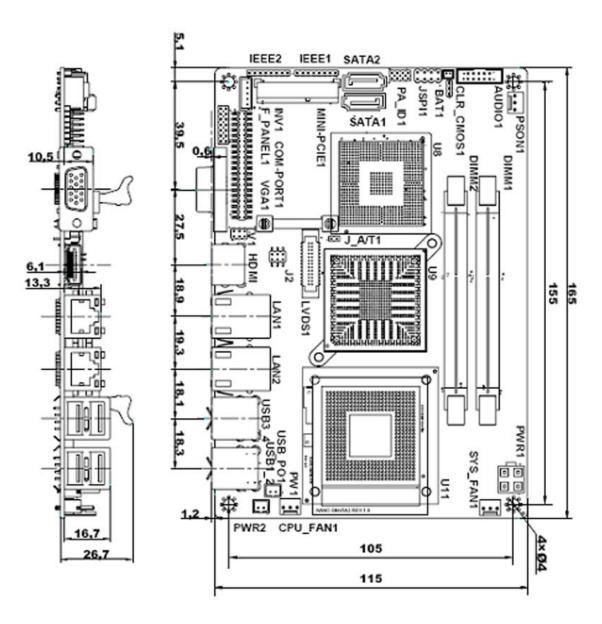


Figure 1-3: NANO-GM45A2 Dimensions (mm)

1.4 Data Flow

Figure 1-4 shows the data flow between the two on-board chipsets and other components installed on the motherboard and described in the following sections of this chapter.

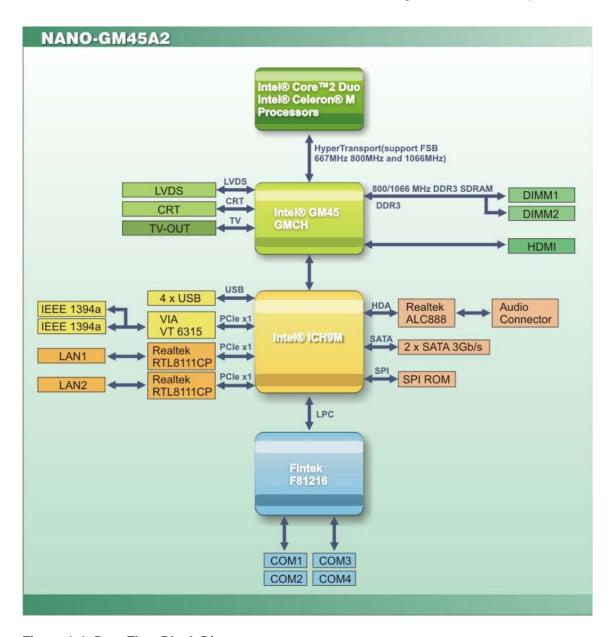


Figure 1-4: Data Flow Block Diagram

1.5 Technical Specifications

NANO-GM45A2 technical specifications are listed in table below.

Specification	NANO-GM45A2
Form Factor	EPIC
Socket	Socket P
CPU Supported	45 nm Socket P Intel® Core™2 Duo processor
	45 nm Socket P Intel® Celeron® M processor
Front Side Bus	1066 MHz (Max.), 800 MHz or 667 MHz
(FSB)	
Northbridge	Intel® GM45
Chipset	
Southbridge	Intel® ICH9M
Chipset	
Memory	Two 204-pin 1066/800 MHz DDR3 SDRAM SO-DIMMs up to 2.0 GB
	each (system max. 4 GB)
Audio	Realtek ALC888 HD 7.1 channel audio codec
LAN	Two Realtek RTL8111CP PCIe GbE controllers
Super I/O	Fintek F81216AD
BIOS	AMI BIOS label
Watchdog Timer	Software programmable supports 1~255 sec. system reset
Expansion	
PCle	One PCIe mini slot
I/O Interface Connectors	
Audio Connector	One internal audio connector (10-pin box header)
Display port	One VGA port
	One 18-bit or 24-bit dual-channel LVDS connector
	One TV-out connector supports HDTV
	One external HDMI port supports up to 1080p

Specification	NANO-GM45A2	
Ethernet	Two RJ-45 GbE ports	
IEEE 1394a	Two via internal 8-pin header	
Serial Ports	Four RS-232 via internal 40-pin header	
USB 2.0/1.1 ports	Four external USB ports	
Storage		
Serial ATA	Two independent serial ATA (SATA) channels with 3.0 Gb/s	
	data transfer rates	
Environmental and P	Environmental and Power Specifications	
Power Supply	12 V only	
	ATX and AT power supported	
Power	12 V @ 3.06A	
Consumption	Intel® Core™2 Duo T9400 CPU with 1 GB 1066 MHz DDR3 SO-DIMM	
Operating	-10°C ~ 60°C (requires cooler and silicone heat sink paste)	
temperature		
Humidity	5% ~ 95% (non-condensing)	
Physical Specifications		
Dimensions	165 mm x 115 mm	
Weight GW/NW	700g/350g	

Table 1-1: Technical Specifications

Chapter

2

Unpacking

2.1 Anti-static Precautions

WARNING!

Static electricity can destroy certain electronics. Make sure to follow the ESD precautions to prevent damage to the product, and injury to the user.

Make sure to adhere to the following guidelines:

- Wear an anti-static wristband: Wearing an anti-static wristband can prevent electrostatic discharge.
- Self-grounding: Touch a grounded conductor every few minutes to discharge any excess static buildup.
- Use an anti-static pad: When configuring any circuit board, place it on an anti-static mat.
- Only handle the edges of the PCB: Don't touch the surface of the motherboard. Hold the motherboard by the edges when handling.

2.2 Unpacking Precautions

When the NANO-GM45A2 is unpacked, please do the following:

- Follow the antistatic guidelines above.
- Make sure the packing box is facing upwards when opening.
- Make sure all the packing list items are present.

2.3 Packing List

If any of the components listed in the checklist below are missing, do not proceed with the installation. Contact the IEI reseller or vendor the NANO-GM45A2 was purchased from or contact an IEI sales

representative directly by sending an email to sales@iei.com.tw.

The NANO-GM45A2 is shipped with the following components:

Quantity	Item and Part Number	Image
1	NANO-GM45A2 motherboard	
1	Audio cable	
	(P/N: 32000-072100-RS)	
2	SATA cable	
	(P/N : 32000-062800-RS)	
1	AT 12V Cable	40-
	(P/N : 32100-087100-RS)	-
1	Dual IEEE 1394a cable (w bracket)	
	(P/N :CB-IEEE1394-RS)	4
1	Quad RS-232 cable	
	(P/N : 32200-147900-RS)	

1	Mini jumper pack (2.0mm) (P/N : 33100-000033-RS)	
1	Utility CD	O IEI
1	Quick Installation Guide	Chait handland cash discor, were tall a from to come

2.3.1 Optional Items

The following components are options for the NANO-GM45A2:

Item and Part Number	Image
CPU cooler	
(P/N : CF-479B-RS)	
CPU cooler for Intel® Core™2 Duo Processor T9400	
(P/N : CF-479F-RS)	
HDTV output cable	
(P/N : 32000-083702-RS)	9 🗫
SATA power cable	
(P/N : 32102-000100-100-RS	
P/N : 32102-000100-200-RS)	
SATA cable and 5 V power output cable for NANO series	1
(P/N : 32000-114001-RS)	4
ATX power cable	
(P/N : 32100-043403-RS)	1

Chapter

3

Connectors

3.1 Peripheral Interface Connectors

This chapter details all the jumpers and connectors.

3.1.1 NANO-GM45A2 Layout

The figures below show all the connectors and jumpers.

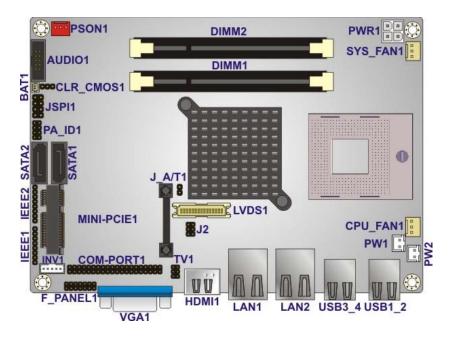


Figure 3-1: Connector and Jumper Locations

3.1.2 Peripheral Interface Connectors

The table below lists all the connectors on the board.

Connector	Туре	Label
ATX power control connector	3-pin wafer	PSON1
Audio connector	10-pin box header	AUDIO1
Backlight inverter connector	5-pin wafer	INV1
Battery connector	2-pin wafer	BAT1
DDR3 SO-DIMM sockets	204-pin socket	DIMM1, DIMM2

Connector	Туре	Label
Fan connector (CPU)	3-pin wafer	CPU_FAN1
Fan connector (system)	3-pin wafer	SYS_FAN1
Front panel connector	14-pin header	F_PANEL1
IEEE 1394a connectors	8-pin header	IEEE1, IEEE2
LVDS connector	30-pin crimp	LVDS1
PCIe mini socket	PCIe mini socket	MINI_PCIE1
Power connector (+12V)	4-pin connector	PWR1
RS-232 serial port connector (COM1~COM4)	40-pin header	COM-PORT1
SATA power connectors	2-pin wafer	PW1, PW2
Serial ATA (SATA) drive connectors	7-pin SATA	SATA1, SATA2
SPI Flash connector	8-pin header	JSPI1
TV Out connector	6-pin header	TV1

Table 3-1: Peripheral Interface Connectors

3.1.3 External Interface Panel Connectors

The table below lists the connectors on the external I/O panel.

Connector	Туре	Label	
Ethernet connector	RJ-45	LAN1, LAN2	
HDMI port	HDMI Type A port	HDMI1	
USB ports (dual)	USB port	USB1_2, USB3_4	
VGA port connector	15-pin female	VGA1	

Table 3-2: Rear Panel Connectors

3.2 Internal Peripheral Connectors

The section describes all of the connectors on the NANO-GM45A2.

3.2.1 ATX Power Supply Enable Connector

CN Label: PSON1

CN Type: 3-pin wafer (1x3)

CN Location: See Figure 3-2

CN Pinouts: See Table 3-3

The ATX power supply enable connector enables the NANO-GM45A2 to be connected to an ATX power supply. In default mode, the NANO-GM45A2 can only use an AT power supply. To enable an ATX power supply the AT Power Select jumper must also be configured. Please refer to **Chapter 4** for more details.

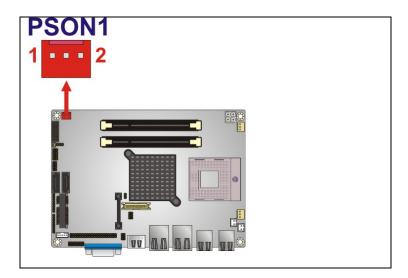


Figure 3-2: ATX Power Supply Enable Connector Location

PIN NO.	DESCRIPTION	
1	+V5SB	
2	IO_PSON#	
3	GND	

Table 3-3: ATX Power Supply Enable Connector Pinouts

3.2.2 Audio Connector

CN Label: AUDIO1

CN Type: 10-pin box header (2x5)

CN Location: See Figure 3-3

CN Pinouts: See Table 3-4

The audio connector is connected to external audio devices including speakers and microphones for the input and output of audio signals to and from the system.

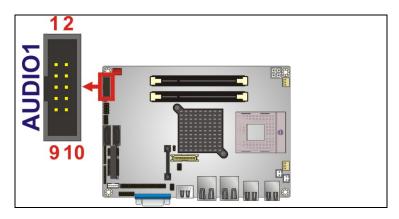


Figure 3-3: Audio Connector Location

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	LINEOUTR	2	LINE1R
3	GND	4	GND
5	LINEOUTL	6	LINE1L
7	GND	8	GND
9	FMIC1R	10	FMIC1L

Table 3-4: Audio Connector Pinouts

3.2.3 Backlight Inverter Connector

CN Label: INV1

CN Type: 5-pin wafer (1x5)

CN Location: See Figure 3-4

CN Pinouts: See Table 3-5

The backlight inverter connector provides the backlight on the LCD display connected to the NANO-GM45A2 with +12V of power.

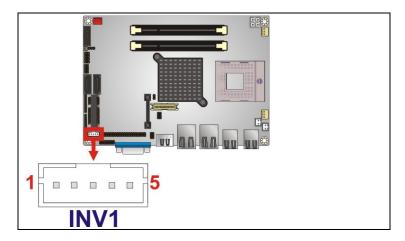


Figure 3-4: Panel Backlight Connector Pinout Locations

PIN NO.	DESCRIPTION		
1	LCD Backlight Control		
2	GROUND		
3	+12V		
4	GROUND		
5	BACKLIGHT Enable		

Table 3-5: Panel Backlight Connector Pinouts

3.2.4 12V Power Connector

CN Label: PWR1

CN Type: 4-pin ATX connector (1x4)

CN Location: See **Figure 3-5**

CN Pinouts: See Table 3-6

The connector supports the 12V power supply.

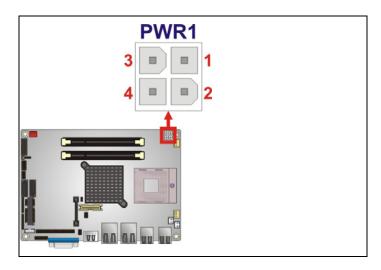


Figure 3-5: CPU 12V Power Connector Location

PIN NO. DESCRIPTION		PIN NO. DESCRIPTION	
1	GND	2	GND
3	+12V	4	+12V

Table 3-6: CPU 12V Power Connector Pinouts

3.2.5 Fan Connectors

CN Label: CPU_FAN1 and SYS_FAN1

CN Type: 3-pin wafer (1x3)

CN Location: See Figure 3-6

CN Pinouts: See Table 3-7

The cooling fan connector provides a 12V, 500mA current to the cooling fan. The connector has a "rotation" pin to get rotation signals from fans and notify the system so the system BIOS can recognize the fan speed. Please note that only specified fans can issue the rotation signals.

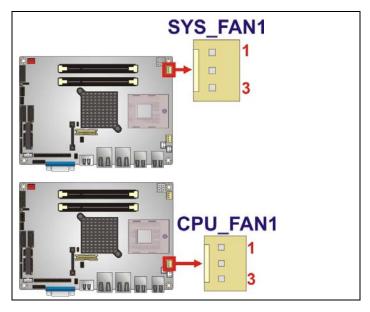


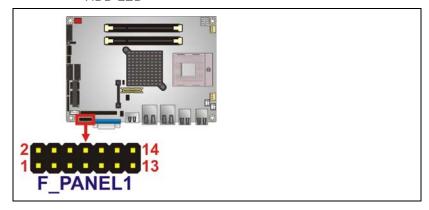
Figure 3-6: +12V Fan Connector Locations

PIN NO.	DESCRIPTION
1	N/C
2	+12V
3	GND

Table 3-7: +12V Fan Connector Pinouts

3.2.6 Front Panel Connector

CN Label: F_PANEL1


CN Type: 14-pin header (2x7)

CN Location: See Figure 3-7

CN Pinouts: See Table 3-8

The front panel connector connects to external switches and indicators to monitor and controls the motherboard. These indicators and switches include:

- Power button
- Reset
- Power LED
- HDD LED

Figure 3-7: Front Panel Connector Location

FUNCTION	PIN	DESCRIPTION	FUNCTION	PIN	DESCRIPTION
Power LED	1	+V5S	System	2	+V5S
	3	N/C	Beeper	4	N/C
	5	GND		6	N/C
Power Button	7	PWR_BT#		8	PC_BEEP
	9	GND		10	N/C
HDD LED	11	+V5S	Reset	12	PM_SYSRST#
	13	SB_SATA_LED		14	GND

Table 3-8: Front Panel Connector Pinouts

3.2.7 IEEE 1394a Connectors

CN Label: IEEE1 and IEEE2

CN Type: 8-pin header (1x8)

CN Location: See Figure 3-8

CN Pinouts: See Table 3-9

The 8-pin connector is connected to IEEE 1394a interface for high-speed data transfer.

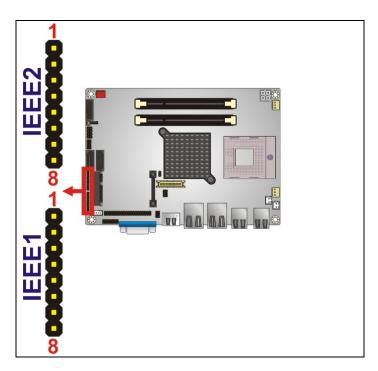


Figure 3-8: IEEE 1394a Connector Locations

PIN NO.	DESCRIPTION	
1	+V12S	
2	GND	
3	XTPBM	
4	XTPBP	
5	XTPAM	
6	XTPAP	
7	GND	
8	GND	

Table 3-9: IEEE 1394a Connector Pinouts

3.2.8 LVDS LCD Connector

CN Label: LVDS1

CN Type: 30-pin crimp (3x10)

CN Location: See Figure 3-9

CN Pinouts: See Table 3-10

The 30-pin LVDS LCD connectors can be connected to single channel or dual channel, 18-bit LVDS panel.

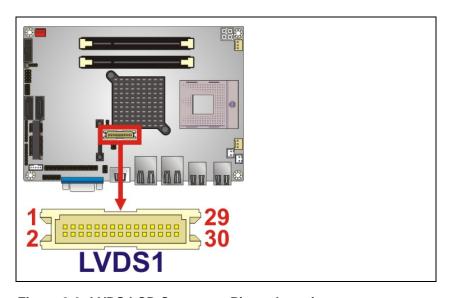


Figure 3-9: LVDS LCD Connector Pinout Location

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	GND	2	GND
3	LVDS_TXL0P	4	LVDS_TXLON
5	LVDS_TXL1P	6	LVDS_TXL1N
7	LVDS_TXL2P	8	LVDS_TXL2N
9	LVDS_TXLCKP	10	LVDS_TXLCKN
11	LVDS_TXL3P	12	LVDS_TXL3N
13	GND	14	GND
15	LVDS_TXU0P	16	LVDS_TXUON
17	LVDS_TXU1P	18	LVDS_TXU1N

19	LVDS_TXU2P	20	LVDS_TXU2N
21	LVDS_TXUCKP	22	LVDS_TXUCKN
23	LVDS_TXU3P	24	LVDS_TXU3N
25	GND	26	GND
27	+LCD	28	+LCD
29	+LCD	30	+LCD

Table 3-10: LVDS LCD Port Connector Pinouts

3.2.9 PCle Mini Card Slot

CN Label: MINI_PCIE1

CN Type: 52-pin PCle Mini Card Slot

CN Location: See **Figure 3-10**

CN Pinouts: See Table 3-11

The PCIe mini card slot enables a PCIe mini card expansion module to be connected to the board. Cards supported include among others wireless LAN (WLAN) cards.

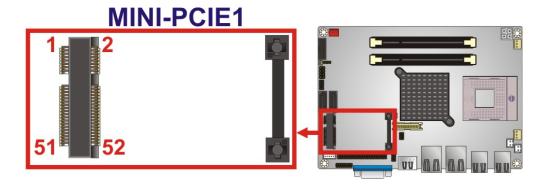


Figure 3-10: PCIe Mini Card Slot Location

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	PCIE_WAKE#	2	3.3V
3	N/C	4	GND
5	N/C	6	1.5V
7	CLKREQ#	8	N/C
9	GND	10	N/C
11	CLK-	12	N/C
13	CLK+	14	N/C
15	GND	16	N/C
17	N/C	18	GND
19	N/C	20	N/C
21	GND	22	PCIRST#
23	PERN2	24	3VDual
25	PERP2	26	GND
27	GND	28	1.5V
29	GND	30	SMBCLK
31	PETN2	32	SMBDATA
33	PETP2	34	GND
35	GND	36	USBD-
37	N/C	38	USBD+
39	N/C	40	GND
41	N/C	42	N/C
43	N/C	44	N/C
45	N/C	46	N/C
47	N/C	48	1.5V
49	N/C	50	GND
51	N/C	52	3.3V

Table 3-11: PCle Mini Card Slot Pinouts

3.2.10 SATA Drive Connectors

CN Label: SATA1 and SATA2

CN Type: 7-pin SATA drive connectors

CN Location: See Figure 3-11

CN Pinouts: See Table 3-12

The SATA connectors connect to SATA hard drives or optical drives.

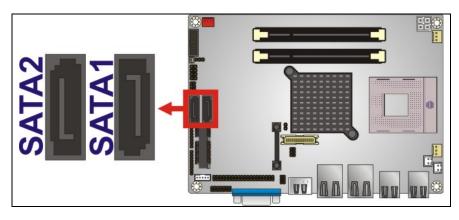


Figure 3-11: SATA Drive Connector Locations

PIN NO.	DESCRIPTION
1	GND
2	TX+
3	TX-
4	GND
5	RX-
6	RX+
7	GND

Table 3-12: SATA Drive Connector Pinouts

3.2.11 SATA Power Connector (+5V)

CN Label: PW1 and PW2

NANO-GM45A2 EPIC SBC

CN Type: 2-pin wafer (1x2)

CN Location: See Figure 3-12

CN Pinouts: See **Table 3-13**

The 5V Power Connector provides +5V power output to the SATA connector.

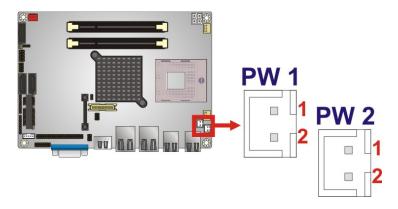


Figure 3-12: 5V Power Connector Locations

PIN NO.	DESCRIPTION
1	+5V
2	GND

Table 3-13: 5V Power Connector Pinouts

3.2.12 Serial Port Connectors (COM 1 ~ COM 4)

CN Label: COM-PORT1

CN Type: 40-pin header (2x20)

CN Location: See Figure 3-13

CN Pinouts: See Table 3-14

The 40-pin serial port connector contains the following four serial ports: COM1, COM2, COM3 and COM4. All these serial ports are RS-232 serial communications channels. The serial port locations are specified below.

COM1 is located on pin 1 to pin 10

NANO-GM45A2 EPIC SBC

- COM2 is located on pin 11 to pin 20
- COM3 is located on pin 21 to pin 30
- COM4 is located on pin 31 to pin 40

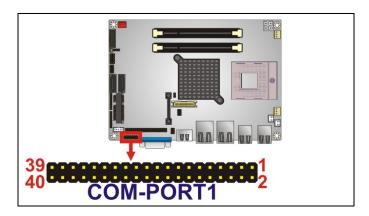


Figure 3-13: COM Connector Pinout Location

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	NDCD1	2	NDSR1
3	NRX1	4	NRTS1
5	NTX1	6	NCTS1
7	NDTR1	8	NRI1
9	GND	10	GND
11	NDCD2	12	NDSR2
13	NRX2	14	NRTS2
15	NTX2	16	NCTS2
17	NDTR2	18	NRI2
19	GND	20	GND
21	NDCD3	22	NDSR3
23	NRX3	24	NRTS3
25	NTX3	26	NCTS3
27	NDTR3	28	NRI3
29	GND	30	GND
31	NDCD4	32	NDSR4
33	NRX4	34	NRTS4
35	NTX4	36	NCTS4
37	NDTR4	38	NRI4

39 GND	40 GND	
--------	--------	--

Table 3-14: COM Connector Pinouts

3.2.13 SPI Flash Connector

CN Label: JSPI1

CN Type: 8-pin header (2x4)

CN Location: See Figure 3-14

CN Pinouts: See **Table 3-15**

The 8-pin SPI Flash connector is used to flash the BIOS.

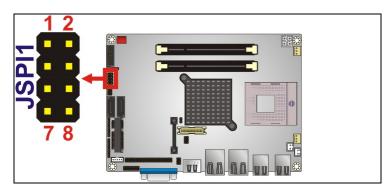


Figure 3-14: SPI Flash Connector

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	SPI_VCC (+3.3 V)	2	GND
3	U46_CS#0	4	U46_CLK
5	U46_SO0	6	U46_SI
7	N/C	8	N/C

Table 3-15: SPI Flash Connector

3.2.14 TV Out Connector

CN Label: TV1

CN Type: 6-pin header (2x3)

CN Location: See Figure 3-15

CN Pinouts: See Table 3-16

The 2x3 pin TV out connector connects to a TV output by using an S-Video or RCA connector. The TV out connector makes displaying media data on a television easier.

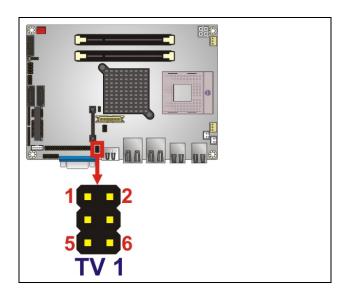


Figure 3-15: TV Connector Pinout Location

S-Video Connector			
PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	GND	2	ABLUE_CVBS
3	GND	4	AGREEN_Y
5	GND	6	ARED_C

Table 3-16: TV Port Connector Pinouts

3.3 External Peripheral Interface Connector Panel

Figure 3-16 shows the NANO-GM45A2 external peripheral interface connector (EPIC) panel. The NANO-GM45A2 EPIC panel consists of the following:

- 1 x HDMI connector
- 2 x RJ-45 LAN connectors
- 4 x USB connectors

1 x VGA connector

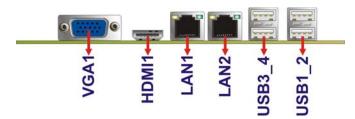


Figure 3-16: NANO-GM45A2 External Peripheral Interface Connector

3.3.1 HDMI Connector

CN Label: HDMI1

CN Type: HDMI type A connector

CN Location: See Figure 3-16

CN Pinouts: See Table 3-17

The HDMI (High-Definition Multimedia Interface) connector connects to digital audio or video sources.

PIN	DESCRIPTION	PIN	DESCRIPTION
1	HDMI_DATA2	2	GND
3	HDMI_DATA2#	4	HDMI_DATA1
5	GND	6	HDMI_DATA1#
7	HDMI_DATA0	8	GND
9	HDMI_DATA0#	10	HDMI_CLK
11	GND	12	HDMI_CLK#
13	N/C	14	N/C
15	HDMI_SCL	16	HDMI_SDA
17	GND	18	+V5S
19	HDMI_HPD		

Table 3-17: HDMI Connector Pinouts

3.3.2 LAN Connectors

CN Label: LAN1 and LAN2

CN Type: RJ-45

CN Location: See Figure 3-16

CN Pinouts: See Table 3-18

The NANO-GM45A2 is equipped with two built-in RJ-45 Ethernet controllers. The controllers can connect to the LAN through two RJ-45 LAN connectors. There are two LEDs on the connector indicating the status of LAN. The pin assignments are listed in the following table:

PIN	DESCRIPTION	PIN	DESCRIPTION
1	MDIA3-	5	MDIA1+
2	MDIA3+	6	MDIA2+
3	MDIA2-	7	MDIAO-
4	MDIA1-	8	MDIAO+

Table 3-18: LAN Pinouts

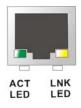


Figure 3-17: RJ-45 Ethernet Connector

The RJ-45 Ethernet connector has two status LEDs, one green and one yellow. The green LED indicates activity on the port and the yellow LED indicates the port is linked. See **Table 3-19**.

STATUS	DESCRIPTION	STATUS	DESCRIPTION
GREEN	Activity	YELLOW	Linked

Table 3-19: RJ-45 Ethernet Connector LEDs

3.3.3 USB Connectors

CN Label: USB1_2 and USB3_4

CN Type: USB port

CN Location: See **Figure 3-16**

CN Pinouts: See Table 3-20

The NANO-GM45A2 has four external USB 2.0 ports. The ports connect to both USB 2.0 and USB 1.1 devices.

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	+5V	5	+5V
2	USBPON	6	USBP1N
3	USBPOP	7	USBP1P
4	GND	8	GND

Table 3-20: USB Port Connector Pinouts (USB1_2)

PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION
1	+5V	5	+5V
2	USBP2N	6	USBP3N
3	USBP2P	7	USBP4P
4	GND	8	GND

Table 3-21: USB Port Connector Pinouts (USB3_4)

3.3.4 VGA Connector

CN Label: VGA1

CN Type: 15-pin Female

CN Location: See Figure 3-16

CN Pinouts: See Figure 3-18 and Table 3-22

NANO-GM45A2 EPIC SBC

The NANO-GM45A2 has a single 15-pin female connector for connectivity to standard display devices.

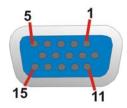


Figure 3-18: VGA Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	RED	9	VGAVCC
2	GREEN	10	GROUND
3	BLUE	11	NC
4	NC	12	DDCDAT
5	GROUND	13	HSYNC
6	GROUND	14	VSYNC
7	GROUND	15	DDCCLK
8	GROUND		

Table 3-22: VGA Connector Pinouts

Chapter

4

Installation

4.1 Anti-static Precautions

WARNING:

Failure to take ESD precautions during the installation of the NANO-GM45A2 may result in permanent damage to the NANO-GM45A2 and severe injury to the user.

Electrostatic discharge (ESD) can cause serious damage to electronic components, including the NANO-GM45A2. Dry climates are especially susceptible to ESD. It is therefore critical that whenever the NANO-GM45A2 or any other electrical component is handled, the following anti-static precautions are strictly adhered to.

- Wear an anti-static wristband: Wearing a simple anti-static wristband can help to prevent ESD from damaging the board.
- Self-grounding: Before handling the board, touch any grounded conducting material. During the time the board is handled, frequently touch any conducting materials that are connected to the ground.
- Use an anti-static pad: When configuring the NANO-GM45A2, place it on an antic-static pad. This reduces the possibility of ESD damaging the NANO-GM45A2.
- Only handle the edges of the PCB: When handling the PCB, hold the PCB by the edges.

4.2 Installation Considerations

NOTE:

The following installation notices and installation considerations should be read and understood before the NANO-GM45A2 is installed. All installation notices pertaining to the installation of the NANO-GM45A2 should be strictly adhered to. Failing to adhere to these precautions may lead to severe damage of the NANO-GM45A2 and injury to the person installing the motherboard.

4.2.1 Installation Notices

WARNING:

The installation instructions described in this manual should be carefully followed in order to prevent damage to the NANO-GM45A2, NANO-GM45A2 components and injury to the user.

Before and during the installation please **DO** the following:

- Read the user manual:
 - O The user manual provides a complete description of the NANO-GM45A2 installation instructions and configuration options.
- Wear an electrostatic discharge cuff (ESD):
 - O Electronic components are easily damaged by ESD. Wearing an ESD cuff removes ESD from the body and helps prevent ESD damage.
- Place the NANO-GM45A2 on an antistatic pad:
 - O When installing or configuring the motherboard, place it on an antistatic pad. This helps to prevent potential ESD damage.
- Turn all power to the NANO-GM45A2 off:

O When working with the NANO-GM45A2, make sure that it is disconnected from all power supplies and that no electricity is being fed into the system.

Before and during the installation of the NANO-GM45A2 DO NOT:

- Remove any of the stickers on the PCB board. These stickers are required for warranty validation.
- Use the product before verifying all the cables and power connectors are properly connected.
- Allow screws to come in contact with the PCB circuit, connector pins, or its components.

4.2.2 Installation Checklist

The following checklist is provided to ensure the NANO-GM45A2 is properly installed.

- All the items in the packing list are present
- A compatible memory module is properly inserted into the slot
- The CF Type I or CF Type II card is properly installed into the CF socket
- The jumpers have been properly configured
- The NANO-GM45A2 is inserted into a chassis with adequate ventilation
- The correct power supply is being used
- The following devices are properly connected
 - O Primary and secondary IDE device
 - O SATA drives
 - O Power supply
 - O USB cable
 - O Serial port cable
- The following external peripheral devices are properly connected to the chassis:
 - O VGA screen
 - Keyboard
 - O Mouse
 - O RS-232 serial communications device
 - O USB devices

4.3 Unpacking

When the NANO-GM45A2 is unpacked, please check all the unpacking list items listed in Chapter 3 are indeed present. If any of the unpacking list items are not available please contact the NANO-GM45A2 vendor reseller/vendor where the NANO-GM45A2 was purchased or contact an IEI sales representative.

4.4 CPU, CPU Cooling Kit and SO-DIMM Installation

WARNING:

A CPU should never be turned on without the specified cooling kit being installed. If the cooling kit (heat sink and fan) is not properly installed and the system turned on, permanent damage to the CPU, NANO-GM45A2 and other electronic components attached to the system may be incurred. Running a CPU without a cooling kit may also result in injury to the user.

The CPU, CPU cooling kit and DIMM are the most critical components of the NANO-GM45A2. If one of these component is not installed the NANO-GM45A2 cannot run.

4.4.1 Socket P CPU Installation

WARNING:

CPUs are expensive and sensitive components. When installing the CPU please be careful not to damage it in anyway. Make sure the CPU is installed properly and ensure the correct cooling kit is properly installed.

To install a socket P CPU onto the NANO-GM45A2, follow the steps below:

WARNING:

When handling the CPU, only hold it on the sides. DO NOT touch the pins at the bottom of the CPU.

Step 1: Unlock the CPU retention screw. When shipped, the retention screw of the CPU socket should be in the unlocked position. If it is not in the unlocked position, use a screwdriver to unlock the screw. See Figure 4-1.

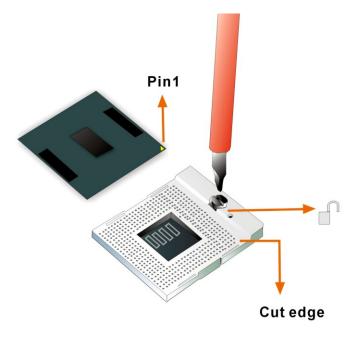


Figure 4-1: Make sure the CPU socket retention screw is unlocked

- Step 2: Inspect the CPU socket. Make sure there are no bent pins and make sure the socket contacts are free of foreign material. If any debris is found, remove it with compressed air.
- **Step 3:** Correctly Orientate the CPU. Make sure the IHS (integrated heat sink) side is facing upwards.
- Step 4: Correctly position the CPU. Match the Pin 1 mark with the cut edge on the CPU socket. See Figure 4-1.

- **Step 5:** Align the CPU pins. Carefully align the CPU pins with the holes in the CPU socket.
- **Step 6: Insert the CPU.** Gently insert the CPU into the socket. If the CPU pins are properly aligned, the CPU should slide into the CPU socket smoothly.
- Step 7: Lock the retention screw. Rotate the retention screw into the locked position.
 See Figure 4-2.

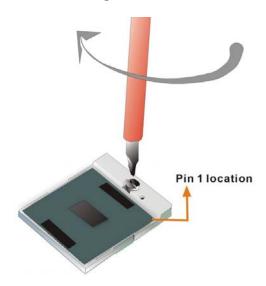


Figure 4-2: Lock the CPU Socket Retention Screw

4.4.2 Socket P Cooling Kit Installation

An IEI Socket P CPU cooling kit can be purchased separately. (See **Chapter 3**) The cooling kit comprises a CPU heat sink and a cooling fan.

WARNING:

Do not wipe off (accidentally or otherwise) the pre-sprayed layer of thermal paste on the bottom of the heat sink. The thermal paste between the CPU and the heat sink is important for optimum heat dissipation.

To install the cooling kit, please follow the steps below.

Step 8: Install the cooling kit bracket. A cooling kit bracket is installed on the rear of the motherboard. Align the bracket with the four retention holes at the back of the motherboard. Once properly aligned, insert four retention screws from the front of the motherboard.

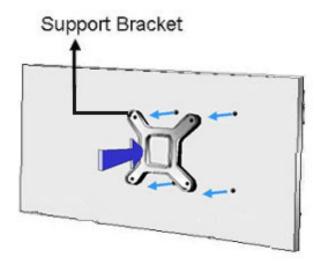


Figure 4-3: Cooling Kit Support Bracket

- Step 9: Open the lever at the top of the heat sink. Lift the lever at the top of the cooling kit to loosen the cooling kit clamps.
- Step 10: Secure the cooling kit. Gently place the heat sink and cooling kit onto the CPU.

 Make sure the hooks are properly secured to the bracket. To secure the cooling kit, close the top lever.
- **Step 11: Connect the fan cable**. Connect the cooling kit fan cable to the fan connector on the NANO-GM45A2. Carefully route the cable and avoid heat generating chips and fan blades.

4.4.3 SO-DIMM Installation

To install an SO-DIMM, please follow the steps below and refer to **Figure 4-4**.

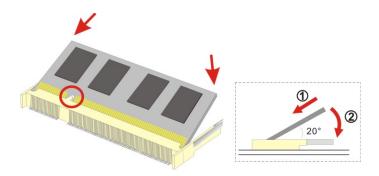
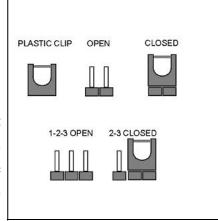


Figure 4-4: SO-DIMM Installation


- Step 1: Locate the SO-DIMM socket. Place the board on an anti-static mat.
- Step 2: Align the SO-DIMM with the socket. Align the notch on the memory with the notch on the memory socket.
- **Step 3:** Insert the SO-DIMM. Push the memory in at a 20° angle. (See Figure 4-4)
- Step 4: Seat the SO-DIMM. Gently push downwards and the arms clip into place. (See Figure 4-4)

4.5 Jumper Settings

NOTE:

A jumper is a metal bridge used to close an electrical circuit. It consists of two or three metal pins and a small metal clip (often protected by a plastic cover) that slides over the pins to connect them. To CLOSE/SHORT a jumper means connecting the pins of the jumper with the plastic clip and to OPEN a jumper means removing the plastic clip from a jumper.

Before the NANO-GM45A2 is installed in the system, the jumpers must be set in accordance with the desired configuration. The jumpers on the NANO-GM45A2 are listed in **Table 4-1**.

NANO-GM45A2 EPIC SBC

Description	Label	Туре
AT Power Mode Setting	J_A/T1	2-pin wafer
Clear CMOS	CLR_CMOS1	3-pin header
LVDS Panel Resolution	PA_ID1	8-pin header
LVDS Voltage Select	J2	6-pin header

Table 4-1: Jumpers

4.5.1 AT Power Select Jumper Settings

NOTE:

The AT Power Select Jumper is the same as the ATX Enable connector.

Jumper Label: J_A/T1

Jumper Type: 2-pin header

Jumper Settings: See Table 4-2

Jumper Location: See Figure 4-5

The AT Power Select jumper specifies the systems power mode as AT or ATX. AT Power Select jumper settings are shown in **Table 4-2**.

AT Power Select	Description	
Short 1 – 2	Use AT power	Default
Open	Use ATX power	

Table 4-2: AT Power Select Jumper Settings

The location of the AT Power Select jumper is shown in **Figure 4-5** below.

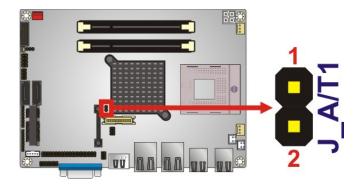


Figure 4-5: AT Power Select Jumper Location

4.5.2 Clear CMOS Jumper

Jumper Label: CLR_CMOS1

Jumper Type: 3-pin header

Jumper Settings: See Table 4-3

Jumper Location: See Figure 4-6

If the NANO-GM45A2 fails to boot due to improper BIOS settings, the clear CMOS jumper clears the CMOS data and resets the system BIOS information. To do this, use the jumper cap to close pins 2 and 3 for a few seconds then reinstall the jumper clip back to pins 1 and 2.

If the "CMOS Settings Wrong" message is displayed during the boot up process, the fault may be corrected by pressing the F1 to enter the CMOS Setup menu. Do one of the following:

- Enter the correct CMOS setting
- Load Optimal Defaults
- Load Failsafe Defaults.

After having done one of the above, save the changes and exit the CMOS Setup menu.

The clear CMOS jumper settings are shown in **Table 4-3**.

NANO-GM45A2 EPIC SBC

Clear CMOS	Description	
Short 1 - 2	Keep CMOS Setup	Default
Short 2 - 3	Clear CMOS Setup	

Table 4-3: Clear CMOS Jumper Settings

The location of the clear CMOS jumper is shown in Figure 4-6 below.

Figure 4-6: Clear CMOS Jumper

4.5.3 LVDS Panel Resolution Jumper

Jumper Label: PA_ID1

Jumper Type: 8-pin header

Jumper Settings: See Table 4-4

Jumper Location: See Figure 4-7

The LVDS Panel Resolution jumper allows the resolution of the LVDS screens connected to the LVDS1 connector to be configured. The LVDS Panel Resolution jumper settings are shown in **Table 4-4**.

PA_ID1	Description	
Open	640 x 480 (18-bit)	
Short 1-2	800 x 480 (18-bit)	
Short 3-4	1024 x 768 (18-bit)	Default
Short 1-2, 3-4	1024 x 768 (24-bit)	
Short 5-6	1024 x 768 (48-bit)	
Short 1-2, 5-6	1280 x 1024 (48-bit)	
Short 3-4, 5-6	1600 x 1200 (48-bit)	
Short 1-2, 3-4, 5-6	1280 x 768 (18-bit)	
Short 7-8	1280 x 800 (18-bit)	
Short 1-2, 7-8	1366 x 768 (24-bit)	
Short 3-4, 7-8	1440 x 900 (36-bit)	
Short 1-2, 3-4, 7-8	1440 x 900 (48-bit)	
Short 5-6, 7-8	1680 x 1050 (48-bit)	
Short 1-2, 5-6, 7-8	1920 x 1080 (48-bit)	
Short 3-4, 5-6, 7-8	1920 x 1200 (48-bit)	

Table 4-4: LVDS Panel Resolution Jumper Settings

The LVDS Panel Resolution jumper location is shown in Figure 4-7.

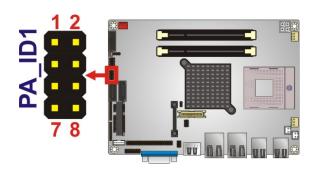


Figure 4-7: LVDS Panel Resolution Jumper Pinout Locations

4.5.4 LVDS Voltage Selection

WARNING:

Permanent damage to the screen and NANO-GM45A2 may occur if the wrong voltage is selected with this jumper. Please refer to the user guide that cam with the monitor to select the correct voltage.

Jumper Label: J2

Jumper Type: 6-pin header

Jumper Settings: See Table 4-5

Jumper Location: See Figure 4-8

The LVDS Voltage Selection jumpers allow the LVDS screen voltages to be set. The jumper sets the voltage connected to LVDS1. The LVDS Voltage Selection jumper settings are shown in Table 4-5.

LCD Voltage Select	Description	
Short 1-2	+3.3V	Default
Short 3-4	+5V	
Short 5-6	+12V	

Table 4-5: LVDS Voltage Selection Jumper Settings

The LVDS Voltage Selection jumper location is shown in **Figure 4-8**.

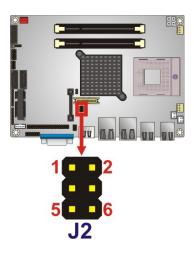


Figure 4-8: LVDS Voltage Selection Jumper Pinout Locations

4.6 Chassis Installation

4.6.1 Airflow

WARNING:

Airflow is critical to the cooling of the CPU and other onboard components. The chassis in which the NANO-GM45A2 must have air vents to allow cool air to move into the system and hot air to move out.

The NANO-GM45A2 must be installed in a chassis with ventilation holes on the sides allowing airflow to travel through the heat sink surface. In a system with an individual power supply unit, the cooling fan of a power supply can also help generate airflow through the board surface.

4.6.2 Motherboard Installation

To install the NANO-GM45A2 motherboard into the chassis please refer to the reference material that came with the chassis.

4.7 Internal Peripheral Device Connections

This section outlines the installation of peripheral devices to the onboard connectors

4.7.1 AT Power Connection

Follow the instructions below to connect the NANO-GM45A2 to an AT power supply.

WARNING:

Disconnect the power supply power cord from its AC power source to prevent a sudden power surge to the NANO-GM45A2.

Step 5: Locate the power cable. The power cable is shown in the packing list in Chapter 3.

Step 6: Connect the Power Cable to the Motherboard. Connect the 4-pin (2x2) Molex type power cable connector to the AT power connector on the motherboard. See Figure 4-9.

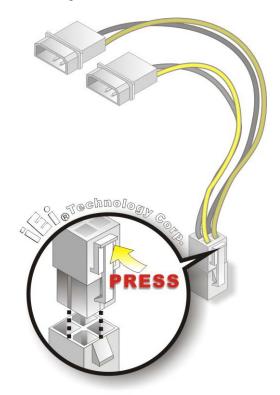


Figure 4-9: Power Cable to Motherboard Connection

Step 7: Connect Power Cable to Power Supply. Connect one of the 4-pin (1x4) Molex type power cable connectors to an AT power supply. See Figure 4-10.

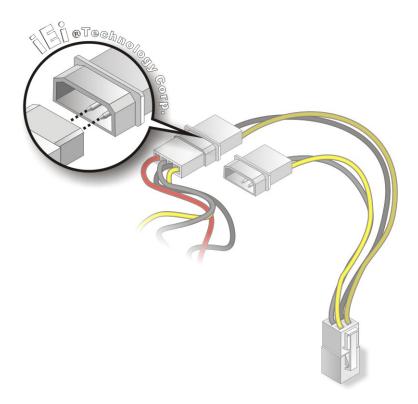


Figure 4-10: Connect Power Cable to Power Supply

4.7.2 ATX Power Connection

Follow the instructions below to connect the NANO-GM45A2 to an ATX power supply.

WARNING:

Disconnect the power supply power cord from its AC power source to prevent a sudden power surge to the NANO-GM45A2.

Step 8: Locate the power cable. The power cable is shown in the packing list in Chapter 3.

Step 9: Connect the Power Cable to the Motherboard. Connect the 4-pin (2x2) Molex type power cable connector to the AT power connector on the motherboard. See Figure 4-11.

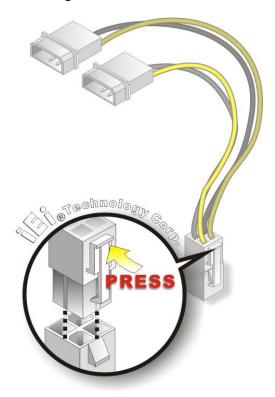


Figure 4-11: Power Cable to Motherboard Connection

Step 10: Connect the Power Cable to an ATX Power Adapter Cable. Connect one of the 4-pin (1x4) Molex type power cable connectors to a 20-pin ATX power adapter cable. See Figure 4-12.

NANO-GM45A2 EPIC SBC

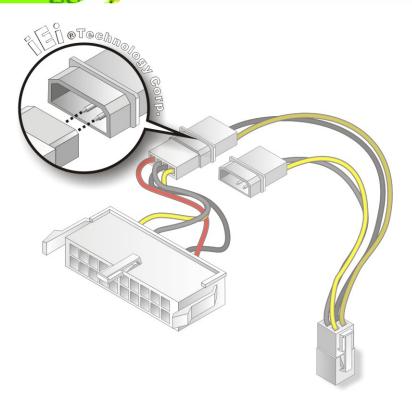


Figure 4-12: Connect Power Cable to ATX Adapter Cable

Step 11: Connect ATX Power Adapter Cable to Power Supply. Connect the 20-pin ATX power adapter cable to an ATX power supply. See Figure 4-13.

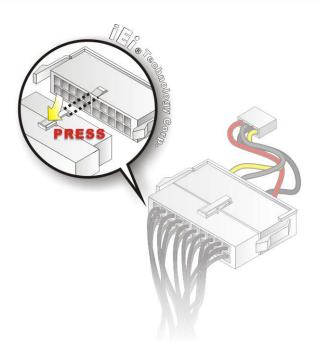


Figure 4-13: Connect ATX Power Adapter Cable to Power Supply

Step 12: Connect ATX Power Cable to Motherboard. Connect the 3-pin ATX power connector to the ATX power connector on the motherboard. See Figure 4-14.

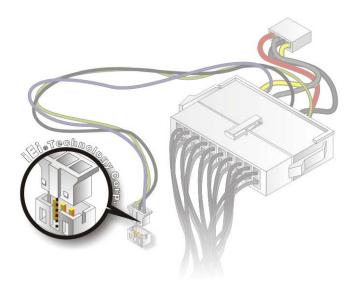


Figure 4-14: Connect ATX Power Cable to Motherboard

4.7.3 Audio Kit Installation

The Audio Kit that came with the NANO-GM45A2 connects to the audio connector on the NANO-GM45A2. The audio kit consists of three audio jacks. Mic-in connects to a microphone. Line-in provides a stereo line-level input to connect to the output of an audio device. Line-out, a stereo line-level output, connects to two amplified speakers. To install the audio kit, please refer to the steps below:

- **Step 13: Locate the audio connector**. The location of the 10-pin audio connector is shown in **Chapter 3**.
- Step 14: Align pin 1. Align pin 1 on the on-board connector with pin 1 on the audio kit connector. Pin 1 on the audio kit connector is indicated with a white dot. See Figure 4-15.

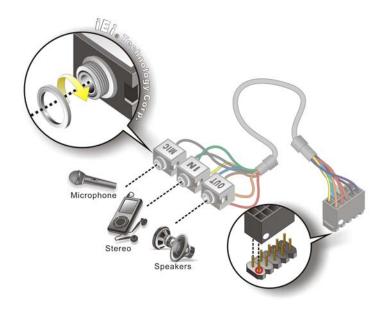


Figure 4-15: Audio Kit Cable Connection

Step 15: Connect the audio devices. Connect speakers to the line-out audio jack.

Connect the output of an audio device to the line-in audio jack. Connect a microphone to the mic-in audio jack.

4.7.4 SATA Drive Connection

The NANO-GM45A2 is shipped with two SATA drive cables and one SATA drive power cable. To connect the SATA drives to the connectors, please follow the steps below.

- **Step 1:** Locate the connectors. The locations of the SATA drive connectors are shown in **Chapter 3**.
- Step 2: Insert the cable connector. Press the clip on the connector at the end of the SATA cable and insert the cable connector into the onboard SATA drive connector. See Figure 4-16.

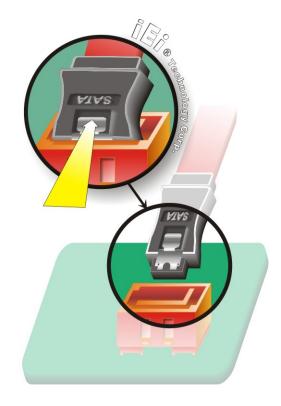


Figure 4-16: SATA Drive Cable Connection

- Step 3: Connect the cable to the SATA disk. Connect the connector on the other end of the cable to the connector at the back of the SATA drive. See Figure 4-17.
- **Step 4:** Connect the SATA power cable. Connect the SATA power connector to the back of the SATA drive. See **Figure 4-17**.

Figure 4-17: SATA Power Drive Connection

4.8 External Peripheral Interface Connection

The following external peripheral devices can be connected to the external peripheral interface connectors.

- RJ-45 Ethernet cable connectors
- USB devices
- VGA monitors

To install these devices, connect the corresponding cable connector from the actual device to the corresponding NANO-GM45A2 external peripheral interface connector making sure the pins are properly aligned.

4.8.1 LAN Connection (Single Connector)

There are two external RJ-45 LAN connectors. The RJ-45 connectors enable connection to an external network. To connect a LAN cable with an RJ-45 connector, please follow the instructions below.

Step 5: Locate the RJ-45 connectors. The locations of the USB connectors are shown in Chapter 4.

Step 6: Align the connectors. Align the RJ-45 connector on the LAN cable with one of the RJ-45 connectors on the NANO-GM45A2. See Figure 4-18.

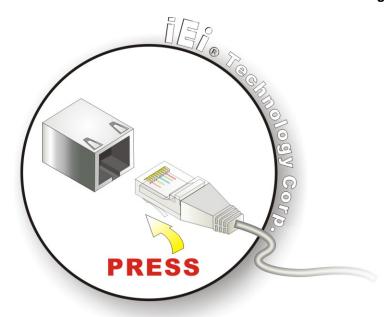


Figure 4-18: LAN Connection

Step 7: Insert the LAN cable RJ-45 connector. Once aligned, gently insert the LAN cable RJ-45 connector into the onboard RJ-45 connector.

4.8.2 USB Connection (Dual Connector)

The external USB Series "A" receptacle connectors provide easier and quicker access to external USB devices. Follow the steps below to connect USB devices to the NANO-GM45A2.

- Step 1: Locate the USB Series "A" receptacle connectors. The location of the USB Series "A" receptacle connectors are shown in Chapter 3.
- Step 2: Insert a USB Series "A" plug. Insert the USB Series "A" plug of a device into the USB Series "A" receptacle on the external peripheral interface. See Figure 4-19.

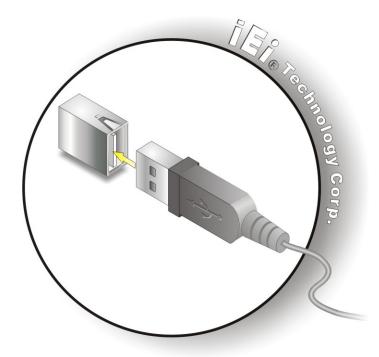


Figure 4-19: USB Connector

4.8.3 VGA Monitor Connection

The NANO-GM45A2 has a single female DB-15 connector on the external peripheral interface panel. The DB-15 connector is connected to a CRT or VGA monitor. To connect a monitor to the NANO-GM45A2, please follow the instructions below.

- Step 3: Locate the female DB-15 connector. The location of the female DB-15 connector is shown in Chapter 3.
- **Step 4:** Align the VGA connector. Align the male DB-15 connector on the VGA screen cable with the female DB-15 connector on the external peripheral interface.
- Step 5: Insert the VGA connector. Once the connectors are properly aligned with the insert the male connector from the VGA screen into the female connector on the NANO-GM45A2. See Figure 4-20.

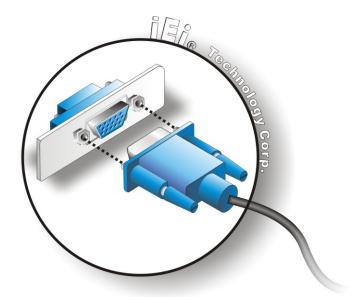


Figure 4-20: VGA Connector

Step 6: Secure the connector. Secure the DB-15 VGA connector from the VGA monitor to the external interface by tightening the two retention screws on either side of the connector.

4.9 Software Installation

All the drivers for the NANO-GM45A2 are on the CD that came with the system. To install the drivers, please follow the steps below.

Step 1: Insert the CD into a CD drive connected to the system.

NOTE:

If the installation program doesn't start automatically: Click "Start->My Computer->CD Drive->autorun.exe"

Step 2: The driver main menu appears (Figure 4-21).

NANO-GM45A2 EPIC SBC

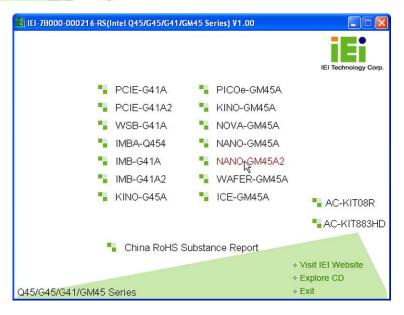


Figure 4-21: Introduction Screen

Step 3: Click NANO-GM45A2.

Step 4: A new screen with a list of available drivers appears (**Figure 4-22**).

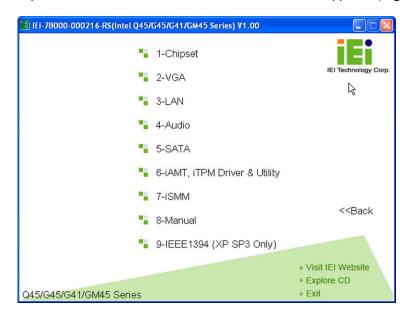


Figure 4-22: Available Drivers

Step 5: Install all of the necessary drivers in this menu.

Chapter

5

BIOS Screens

5.1 Introduction

The BIOS is programmed onto the BIOS chip. The BIOS setup program allows changes to certain system settings. This chapter outlines the options that can be changed.

5.1.1 Starting Setup

The AMI BIOS is activated when the computer is turned on. The setup program can be activated in one of two ways.

- 1. Press the **DELETE** key as soon as the system is turned on or
- 2. Press the **DELETE** key when the "**Press Del to enter SETUP**" message appears on the screen.

If the message disappears before the **DELETE** key is pressed, restart the computer and try again.

5.1.2 Using Setup

Use the arrow keys to highlight items, press **ENTER** to select, use the PageUp and PageDown keys to change entries, press **F1** for help and press **Esc** to quit. Navigation keys are shown in.

Key	Function			
Up arrow	Move to previous item			
Down arrow	Move to next item			
Left arrow	Move to the item on the left hand side			
Right arrow	Move to the item on the right hand side			
Esc key	Main Menu – Quit and not save changes into CMOS			
	Status Page Setup Menu and Option Page Setup Menu			
	Exit current page and return to Main Menu			
Page Up key	Increase the numeric value or make changes			
Page Dn key	Decrease the numeric value or make changes			
F1 key	General help, only for Status Page Setup Menu and Option			
	Page Setup Menu			

Key	Function
F2 /F3 key	Change color from total 16 colors. F2 to select color forward.
F10 key	Save all the CMOS changes, only for Main Menu

Table 5-1: BIOS Navigation Keys

5.1.3 Getting Help

When **F1** is pressed a small help window describing the appropriate keys to use and the possible selections for the highlighted item appears. To exit the Help Window press **Esc** or the **F1** key again.

5.1.4 Unable to Reboot After Configuration Changes

If the computer cannot boot after changes to the system configuration is made, CMOS defaults. Use the jumper described in Chapter 5.

5.1.5 BIOS Menu Bar

The **menu bar** on top of the BIOS screen has the following main items:

- Main Changes the basic system configuration.
- Advanced Changes the advanced system settings.
- PCIPnP Changes the advanced PCI/PnP Settings
- Boot Changes the system boot configuration.
- Security Sets User and Supervisor Passwords.
- Chipset Changes the chipset settings.
- Power Changes power management settings.
- Exit Selects exit options and loads default settings

The following sections completely describe the configuration options found in the menu items at the top of the BIOS screen and listed above.

5.2 Main

The **Main** BIOS menu (**BIOS Menu 1**) appears when the **BIOS Setup** program is entered. The **Main** menu gives an overview of the basic system information.

			BIOS SETU	JP UTILITY				
Main A	dvanced	PCIPNP	Boot	Security	Chir	set	Power	Exit
System Over	rview					_	ENTER], [T-TAB] to	[TAB] or
AMIBIOS						field		
Version								
Build Date							+] or [-]	
ID:	:SA10MR11	L				COLLT	gure syst	tem time.
Processor								
Туре	:Intel® (Core™2 Duo	CPU T94	00 @ 2.53GH	Z			
Speed	:2533MHz							
Count	:1							
						←→	Select S	
System Memo						↑ ↓	Select I	
Size	:2013MB						Go to Su	
System Time	1		[14:20	:271		F1 F10	General Save and	-
System Time			_	/26/2010]		ESC		LEAIC
2,223 22			, 1 4 5	, _ 1 , _ 0 _ 0]		HOC	EATC	
	v02.61 ©	Copyright	1985-2006	, American	Mega	trends	, Inc.	

BIOS Menu 1: Main

System Overview

The **System Overview** lists a brief summary of different system components. The fields in **System Overview** cannot be changed. The items shown in the system overview include:

- AMI BIOS: Displays auto-detected BIOS information
 - O Version: Current BIOS version
 - O Build Date: Date the current BIOS version was made
 - O ID: Installed BIOS ID
- Processor: Displays auto-detected CPU specifications
 - O **Type:** Names the currently installed processor
 - O Speed: Lists the processor speed
 - O Count: The number of CPUs on the motherboard
- System Memory: Displays the auto-detected system memory.
 - O Size: Lists memory size

The System Overview field also has two user configurable fields:

System Time [xx:xx:xx]

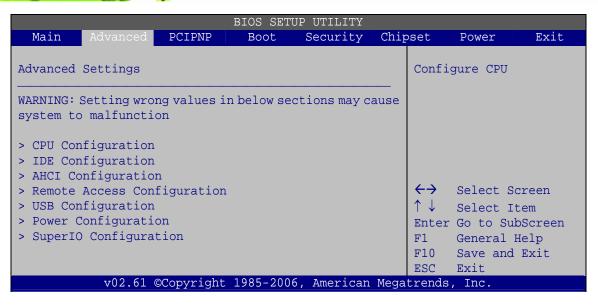
Use the **System Time** option to set the system time. Manually enter the hours, minutes and seconds.

System Date [xx/xx/xx]

Use the **System Date** option to set the system date. Manually enter the day, month and year.

5.3 Advanced

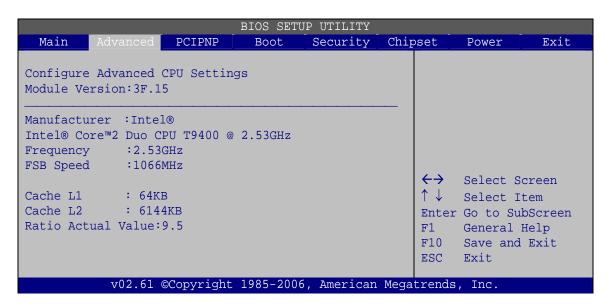
Use the **Advanced** menu (**BIOS Menu 2**) to configure the CPU and peripheral devices through the following sub-menus:



WARNING!

Setting the wrong values in the sections below may cause the system to malfunction. Make sure that the settings made are compatible with the hardware.

- CPU Configuration (see Section 5.3.1)
- IDE Configuration (see Section 5.3.2)
- AHCI Configuration (see Section 5.3.3)
- Remote Access Configuration (see Section 5.3.4)
- USB Configuration (see Section 5.3.5)
- Power Configuration (see Section 5.3.6)
- Super IO Configuration (see Section 5.3.7)



BIOS Menu 2: Advanced

5.3.1 CPU Configuration

Use the **CPU Configuration** menu (**BIOS Menu 3**) to view detailed CPU specifications and configure the CPU.

BIOS Menu 3: CPU Configuration

The CPU Configuration menu (BIOS Menu 3) lists the following CPU details:

Manufacturer: Lists the name of the CPU manufacturer

- Brand String: Lists the brand name of the CPU being used
- Frequency: Lists the CPU processing speed
- FSB Speed: Lists the FSB speed
- Cache L1: Lists the CPU L1 cache size
- Cache L2: Lists the CPU L2 cache size

5.3.2 IDE Configuration

Use the IDE Configuration menu (BIOS Menu 4) to change and/or set the configuration of the IDE devices installed in the system.

Main Advanced PCIPNP	Boot	Security	Chip	set Power Exit
IDE Configuration				DISABLED: disable the integrated IDE
SATA#1 Configuration Configure SATA#1 as	[Compa	atible]		controller. PRIMARY: enables only the Primary IDE
> Primary IDE Master > Primary IDE Slave	_	Detected] Detected		controller SECONDARY: enables only
> Secondary IDE Master	: [Not	Detected]		the Secondary IDE
> Secondary IDE Slave	: [Not	Detected]		controller. BOTH: enables both IDE controllers
				<pre>←→ Select Screen ↑ ↓ Select Item Enter Go to SubScreen F1 General Help F10 Save and Exit</pre>
v02.61 ©Copyright	1985-200	6. American	Mega	ESC Exit

BIOS Menu 4: IDE Configuration

SATA#1 Configurations [Compatible]

Use the **SATA#1 Configurations** option to configure the ATA/IDE controller.

→ **Disabled** Disables the on-board ATA/IDE controller.

Compatible DEFAULT Configures the on-board ATA/IDE controller to be in compatible mode. In this mode, a SATA channel will replace one of the IDE channels. This mode supports

up to 4 storage devices.

Enhanced Configures the on-board ATA/IDE controller to be in

Enhanced mode. In this mode, IDE channels and SATA channels are separated. This mode supports up to 6 storage devices. Some legacy OS do not support this

mode.

Configure SATA as [IDE]

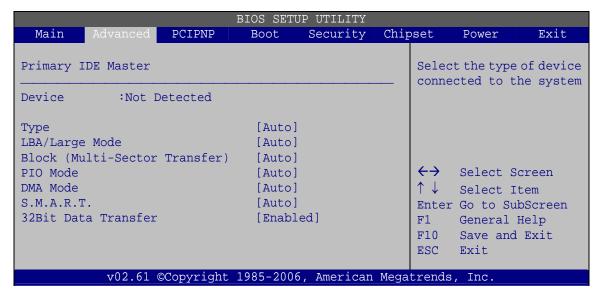
Use the Configure SATA as option to configure SATA devices as normal IDE devices.

→ IDE DEFAULT Configures SATA devices as normal IDE device.

AHCI Configures SATA devices as normal AHCI device.

IDE Master and IDE Slave

When entering setup, BIOS automatically detects the presence of IDE devices. BIOS displays the status of the auto detected IDE devices. The following IDE devices are detected and are shown in the **IDE Configuration** menu:


- Primary IDE Master
- Primary IDE Slave
- Secondary IDE Master
- Secondary IDE Slave

The IDE Configuration menu (BIOS Menu 4) allows changes to the configurations for the IDE devices installed in the system. If an IDE device is detected and one of the above listed four BIOS configuration options are selected, the IDE configuration options shown in Section 5.3.2.1 appear.

5.3.2.1 IDE Master, IDE Slave

Use the **IDE Master** and **IDE Slave** configuration menu to view both primary and secondary IDE device details and configure the IDE devices connected to the system.

BIOS Menu 5: IDE Master and IDE Slave Configuration

Auto-Detected Drive Parameters

The "grayed-out" items in the left frame are IDE disk drive parameters automatically detected from the firmware of the selected IDE disk drive. The drive parameters are listed as follows:

- Device: Lists the device type (e.g. hard disk, CD-ROM etc.)
- Type: Indicates the type of devices a user can manually select
- Vendor: Lists the device manufacturer
- Size: List the storage capacity of the device.
- LBA Mode: Indicates whether the LBA (Logical Block Addressing) is a method of addressing data on a disk drive is supported or not.
- Block Mode: Block mode boosts IDE drive performance by increasing the amount of data transferred. Only 512 bytes of data can be transferred per interrupt if block mode is not used. Block mode allows transfers of up to 64 KB per interrupt.
- PIO Mode: Indicates the PIO mode of the installed device.

- Async DMA: Indicates the highest Asynchronous DMA Mode that is supported.
- Ultra DMA: Indicates the highest Synchronous DMA Mode that is supported.
- S.M.A.R.T.: Indicates whether or not the Self-Monitoring Analysis and Reporting Technology protocol is supported.
- 32Bit Data Transfer: Enables 32-bit data transfer.

Type [Auto]

Use the **Type** BIOS option select the type of device the AMIBIOS attempts to boot from after the Power-On Self-Test (POST) is complete.

→	Not Installed		BIOS is prevented from searching for an IDE disk drive on the specified channel.
→	Auto	DEFAULT	The BIOS auto detects the IDE disk drive type attached to the specified channel. This setting should be used if an IDE hard disk drive is attached to the specified channel.
→	CD/DVD		The CD/DVD option specifies that an IDE CD-ROM drive is attached to the specified IDE channel. The BIOS does not attempt to search for other types of IDE disk drives on the specified channel.
→	ARMD		This option specifies an ATAPI Removable Media Device. These include, but are not limited to: ZIP LS-120

LBA/Large Mode [Auto]

Use the **LBA/Large Mode** option to disable or enable BIOS to auto detects LBA (Logical Block Addressing). LBA is a method of addressing data on a disk drive. In LBA mode, the maximum drive capacity is 137 GB.

→ **Disabled** BIOS is prevented from using the LBA mode control on the specified channel.

Auto DEFAULT BIOS auto detects the LBA mode control on the specified channel.

Block (Multi Sector Transfer) [Auto]

Use the **Block (Multi Sector Transfer)** to disable or enable BIOS to auto detect if the device supports multi-sector transfers.

→	Disabled		BIOS is prevented from using Multi-Sector Transfer on the specified channel. The data to and from the device occurs one sector at a time.
→	Auto	DEFAULT	BIOS auto detects Multi-Sector Transfer support on the drive on the specified channel. If supported the data transfer to and from the device occurs multiple sectors at a time.

PIO Mode [Auto]

Use the **PIO Mode** option to select the IDE PIO (Programmable I/O) mode program timing cycles between the IDE drive and the programmable IDE controller. As the PIO mode increases, the cycle time decreases.

→	Auto	DEFAULT	BIOS auto detects the PIO mode. Use this value if the IDE disk			
			drive support cannot be determined.			
→	0		PIO mode 0 selected with a maximum transfer rate of 3.3 MB/s			
→	1		PIO mode 1 selected with a maximum transfer rate of 5.2 MB/s			
→	2		PIO mode 2 selected with a maximum transfer rate of 8.3 MB/s			
→	3		PIO mode 3 selected with a maximum transfer rate of 11.1 MB/s			
→	4		PIO mode 4 selected with a maximum transfer rate of 16.6 MB/s			
			(This setting generally works with all hard disk drives manufactured after 1999. For other disk drives, such as IDE CD-ROM drives, check the specifications of the drive.)			

DMA Mode [Auto]

Use the **DMA Mode** BIOS selection to adjust the DMA mode options.

→	Auto	DEFAULT	BIOS auto detects the DMA mode. Use this value if the IDE disk drive support cannot be determined.
→	SWDMA0		Single Word DMA mode 0 selected with a maximum data transfer rate of 2.1 MB/s
→	SWDMA1		Single Word DMA mode 1 selected with a maximum data transfer rate of 4.2 MB/s
→	SWDMA2		Single Word DMA mode 2 selected with a maximum data transfer rate of 8.3 MB/s
→	MWDMA0		Multi Word DMA mode 0 selected with a maximum data transfer rate of 4.2 MB/s
→	MWDMA1		Multi Word DMA mode 1 selected with a maximum data transfer rate of 13.3 MB/s
→	MWDMA2		Multi Word DMA mode 2 selected with a maximum data transfer rate of 16.6 MB/s
→	UDMA0		Ultra DMA mode 0 selected with a maximum data transfer rate of 16.6 MB/s
→	UDMA1		Ultra DMA mode 1 selected with a maximum data transfer rate of 25 MB/s
→	UDMA2		Ultra DMA mode 2 selected with a maximum data transfer rate of 33.3 MB/s
→	UDMA3		Ultra DMA mode 3 selected with a maximum data transfer rate of 44 MB/s (To use this mode, it is required that an 80-conductor ATA cable is used.)
→	UDMA4		Ultra DMA mode 4 selected with a maximum data transfer rate of 66.6 MB/s (To use this mode, it is required that an 80-conductor ATA cable is used.)

→ UDMA5

Ultra DMA mode 5 selected with a maximum data transfer rate of 99.9 MB/s (To use this mode, it is required that an 80-conductor ATA cable is used.)

S.M.A.R.T [Auto]

Use the **S.M.A.R.T** option to auto-detect, disable or enable Self-Monitoring Analysis and Reporting Technology (SMART) on the drive on the specified channel. **S.M.A.R.T** predicts impending drive failures. The **S.M.A.R.T** BIOS option enables or disables this function.

→ Auto DEFAULT BIOS auto detects HDD SMART support.

Disabled Prevents BIOS from using the HDD SMART feature.

→ Enabled Allows BIOS to use the HDD SMART feature

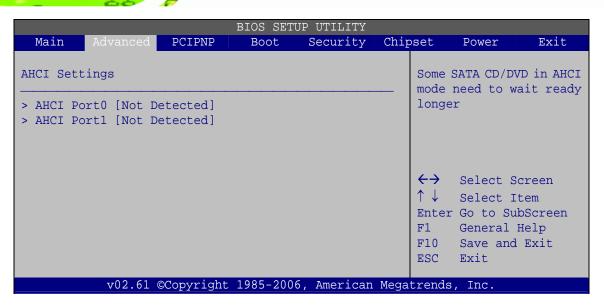
32Bit Data Transfer [Enabled]

Use the **32Bit Data Transfer** BIOS option to enables or disable 32-bit data transfers.

Disabled Prevents the BIOS from using 32-bit data transfers.

Enabled Default Allows BIOS to use 32-bit data transfers on supported hard disk drives.

5.3.3 AHCI Configuration



NOTE:

Advanced Host Controller Interface (AHCI) is a new programming interface for SATA host controllers. AHCI systems do not have master/slave designation for SATA devices, each device is treated as a master, and hardware-assisted native command queuing.

Use the **AHCI Settings** menu (**BIOS Menu 6**) to report on the auto-detection of devices connected to the onboard SATA drive connectors.

BIOS Menu 6: AHCI Configuration

AHCI Port n [Not Detected]

Use the **AHCI Port n** BIOS option to check what AHCI (Advanced Host Controller Interface) devices are detected to a specified SATA drive connector. If a device is detected, selecting the BIOS option, e.g. "**AHCI Port 3**" opens a new window.

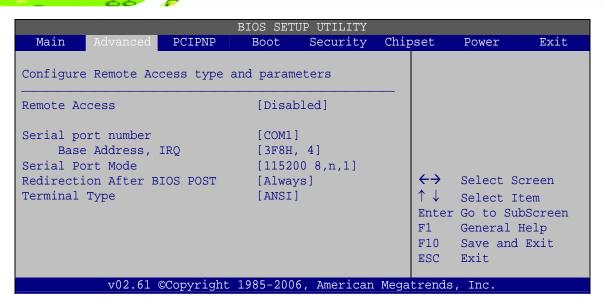
5.3.3.1 AHCI Port n

Use the **AHCI Port n** configuration menu (**BIOS Menu 7**) to configure the drive connected to SATA connector n.

BIOS Menu 7: AHCI Port n Configuration Menu

SATA Port n [Auto]

Use the **SATA Port n** option to enable the system to auto-detect the type of drive connected to SATA drive connector n.


S.M.A.R.T [Enabled]

Use the **S.M.A.R.T** option to enable S.M.A.R.T (Self-Monitoring, Analysis, and Reporting Technology) on the drive connected to SATA drive connector n.

→	Enabled	DEFAULT	S.M.A.R.T is enabled on the drive connected to SATA
			drive connector n on the system
→	Disabled		S.M.A.R.T is disabled on the drive connected to SATA
			drive connector n on the system

5.3.4 Remote Access Configuration

Use the Remote Access Configuration menu (BIOS Menu 8) to configure remote access parameters. The Remote Access Configuration is an AMIBIOS feature and allows a remote host running a terminal program to display and configure the BIOS settings.

BIOS Menu 8: Remote Access Configuration

Remote Access [Disabled]

Use the **Remote Access** option to enable or disable access to the remote functionalities of the system.

→	Disabled	DEFAULT	Remote access is disabled.
→	Enabled		Remote access configuration options shown below appear:
			Serial Port Number
			Serial Port Mode
			Redirection after BIOS POST
			Terminal Type
			These configuration options are discussed below.

Serial Port Number [COM1]

Use the **Serial Port Number** option to select the serial port used for remote access.

→	COM1	DEFAULT	System is remotely accessed through COM1
→	COM2		System is remotely accessed through COM2

→ COM3 System is remotely accessed through COM3

→ COM4 System is remotely accessed through COM4

NOTE: Make sure the selected COM port is enabled through the Super I/O configuration menu.

Base Address, IRQ [3E8h, A]

The **Base Address**, **IRQ** option cannot be configured and only shows the interrupt address of the serial port listed above.

Serial Port Mode [115200 8,n,1]

Use the **Serial Port Mode** option to select baud rate through which the console redirection is made. The following configuration options are available

- 115200 8,n,1 **DEFAULT**
- 57600 8,n,1
- 38400 8,n,1
- 19200 8,n,1
- 09600 8,n,1

NOTE:

Identical baud rate setting musts be set on the host (a management computer running a terminal software) and the slave

Redirection After BIOS POST [Always]

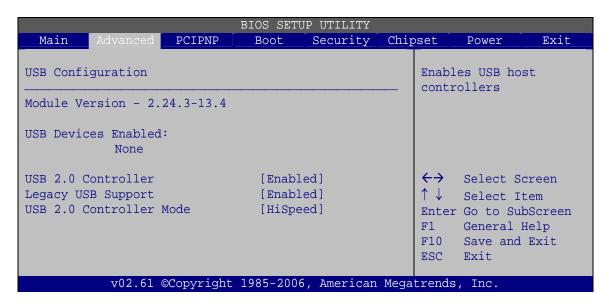
Use the **Redirection After BIOS POST** option to specify when console redirection should occur.

→ Disabled The console is not redirected after POST

Boot Loader Redirection is active during POST and during Boot

Loader

Always Default Redirection is always active (Some OSes may not work if set to Always)


Terminal Type [ANSI]

Use the **Terminal Type** BIOS option to specify the remote terminal type.

→	ANSI	DEFAULT	The target terminal type is ANSI
→	VT100		The target terminal type is VT100
→	VT-UTF8		The target terminal type is VT-UTF8

5.3.5 USB Configuration

Use the **USB Configuration** menu (**BIOS Menu 9**) to read USB configuration information and configure the USB settings.

BIOS Menu 9: USB Configuration

USB Configuration

The USB Configuration field shows the system USB configuration. The items listed are:

Module Version: x.xxxxx.xxxxx

USB Devices Enabled

The USB Devices Enabled field lists the USB devices that are enabled on the system

USB 2.0 Controller [Enabled]

Use the **USB 2.0 Controller** BIOS option is enabled.

Legacy USB Support [Enabled]

Use the **Legacy USB Support** BIOS option to enable USB mouse and USB keyboard support.

Normally if this option is not enabled, any attached USB mouse or USB keyboard does not become available until a USB compatible operating system is fully booted with all USB drivers loaded. When this option is enabled, any attached USB mouse or USB keyboard can control the system even when there is no USB driver loaded onto the system.

→	Disabled	Legacy USB support disabled
----------	----------	-----------------------------

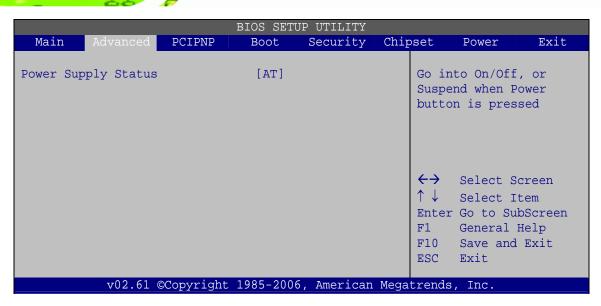
Enabled DEFAULT Legacy USB support enabled

Auto Legacy USB support disabled if no USB devices are

connected

USB2.0 Controller Mode [HiSpeed]

Use the USB2.0 Controller Mode option to set the speed of the USB2.0 controller.


FullSpeed The controller is capable of operating at 12 Mb/s

→ HiSpeed Default The controller is capable of operating at 480 Mb/s

5.3.6 Power Configuration

The **Power Configuration** menu (**BIOS Menu 10**) allows the advanced power management options to be configured.

BIOS Menu 10: APM Configuration

Power Supply Status [By Hardware]

Use the **Power Supply Status** BIOS option to select the power supply that is connected to the system.

→	AT		An AT power supply is connected to the system
→	ATX		An ATX power supply is connected to the system
→	ВҮ	DEFAULT	The power supply mode is set by on-board jumper.
	HARDWARE		

5.3.7 Super IO Configuration

Use the **Super IO Configuration** menu (**BIOS Menu 11**) to set or change the configurations for the FDD controllers, parallel ports and serial ports.

		BIOS SETU	P UTILITY				
Main Advanced	PCIPNP	Boot	Security	Chir	set	Power	Exit
Serial Port1 Address Serial Port1 IRQ Serial Port2 Address Serial Port2 IRQ Serial Port3 Address Serial Port3 IRQ Serial Port4 Address Serial Port4 IRQ		[3F8] [4] [2F8] [3] [3E8] [4] [2E8] [3]			Seria Addre ←→ ↑↓	Select Select Go to Select Save and	Screen Item ubScreen Help
v02.61 ©0	Copyright	1985-2006	, American	Mega	trends	, Inc.	

BIOS Menu 11: Super IO Configuration

Serial Port1 Address [3F8]

Use the **Serial Port1 Address** option to select the Serial Port 1 base address.

→	Disabled		No base address is assigned to Serial Port 1
→	3F8	DEFAULT	Serial Port 1 I/O port address is 3F8
→	2F8		Serial Port 1 I/O port address is 2F8

Serial Port1 IRQ [10]

Use the Serial Port1 IRQ option to select the interrupt address for serial port 1.

→	4	Serial port 1 IRQ address is 4
→	3	Serial port 1 IRQ address is 3

Serial Port2 Address [2F8]

Use the **Serial Port2 Address** option to select the Serial Port 2 base address.

→ Disabled No base address is assigned to Serial Port 2

→ 3F8 Serial Port 2 I/O port address is 3F8

→ 2F8 Serial Port 2 I/O port address is 2F8

Serial Port2 IRQ [3]

Use the **Serial Port2 IRQ** option to select the interrupt address for serial port 2.

→ 4 Serial port 2 IRQ address is 4

→ 3 Serial port 2 IRQ address is 3

Serial Port3 Address [3E8]

Use the **Serial Port3 Address** option to select the base addresses for serial port 3

→ **Disabled** No base address is assigned to serial port 3

→ 3E8 DEFAULT Serial port 3 I/O port address is 3E8

2E8 Serial port 3 I/O port address is 2E8

Serial Port3 IRQ [4]

Use the **Serial Port3 IRQ** option to select the interrupt address for serial port 3.

4 DEFAULT Serial port 3 IRQ address is 4

Serial port 3 IRQ address is 3

→ 10 Serial port 3 IRQ address is 10

→ 11 Serial port 3 IRQ address is 11

Serial Port4 Address [2E8]

Use the **Serial Port4 IRQ** option to select the interrupt address for serial port 4.

→ Disabled No base address is assigned to serial port 4

→ 3E8 Serial port 4 I/O port address is 3E8

DEFAULT Serial port 4 I/O port address is 2E8

Serial Port4 IRQ [4]

Use the Serial Port4 IRQ option to select the interrupt address for serial port 4.

→ 4 DEFAULT Serial port 4 IRQ address is 4

Serial port 1 IRQ address is 3

→ 10 Serial port 1 IRQ address is 10

→ 11 Serial port 1 IRQ address is 11

5.4 PCI/PnP

Use the PCI/PnP menu (BIOS Menu 12) to configure advanced PCI and PnP settings.

WARNING!

Setting wrong values for the BIOS selections in the PCIPnP BIOS menu may cause the system to malfunction.

	BIOS SET	UP UTILITY				
Main Advanced PCIPNP	Boot	Security	Chi	pset	Power	Exit
Advanced PCI/PnP Settings					-	cified IRQ to be use
WARNING: Setting wrong value may cause system to					CI/PnP deved: Spec	evices cified IRO
IRQ3	[Rese	rved]		is re	served f	or use by
IRQ4	[Rese			legac	y ISA de	vices
IRQ5 IRO7		lable] lablel				
IRQ9		lable]				
IRQ10		lable]				
IRQ11	•	lable]				
IRQ14 IRQ15	•	lable] lable]				
DMA Channel 0	[Avai]	lablel		\leftrightarrow	Select :	Screen
DMA Channel 1	[Avai]	lable]		$\uparrow \downarrow$	Select :	Item
DMA Channel 3	[Avai:	lable]		Enter	Go to Si	ubScreen
DMA Channel 5	•	lable]		F1	General	Help
DMA Channel 6 DMA Channel 7	•	lable] lable]		F10		d Exit
Dria Chainer /	[AVdI.	rabie]		ESC	Exit	
Reserved Memory Size	[Disal	oled]				
v02.61 ©Copyrigh	t 1985-200	6, American	Mega	trends	, Inc.	

BIOS Menu 12: PCI/PnP Configuration

IRQ# [Available]

Use the IRQ# address to specify what IRQs can be assigned to a particular peripheral device.

→	Available	DEFAULT	The specified IRQ is available to be used by
			PCI/PnP devices
→	Reserved		The specified IRQ is reserved for use by Legacy ISA
			devices

Available IRQ addresses are:

- IRQ3
- IRQ4
- IRQ5
- IRQ7

- IRQ9
- IRQ10
- IRQ 11
- IRQ 14
- IRQ 15

DMA Channel# [Available]

Use the **DMA Channel#** option to assign a specific DMA channel to a particular PCI/PnP device.

→	Available	DEFAULT	The	specified	DMA	is	available	to	be	used	by
----------	-----------	---------	-----	-----------	-----	----	-----------	----	----	------	----

PCI/PnP devices

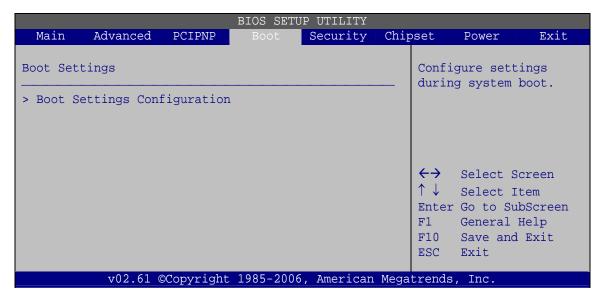
Reserved The specified DMA is reserved for use by Legacy

ISA devices

Available DMA Channels are:

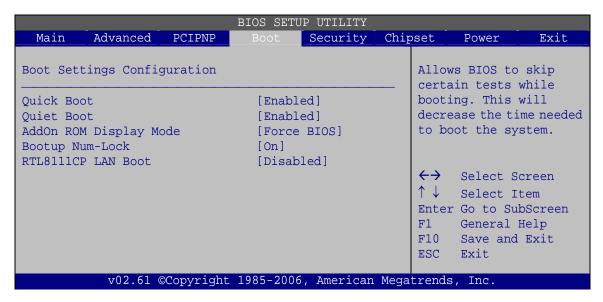
- DM Channel 0
- DM Channel 1
- DM Channel 3
- DM Channel 5
- DM Channel 6
- DM Channel 7

Reserved Memory Size [Disabled]


Use the **Reserved Memory Size** BIOS option to specify the amount of memory that should be reserved for legacy ISA devices.

7	Disabled	DEFAULT	No memory block reserved for legacy ISA devices
→	16K		16 KB reserved for legacy ISA devices
→	32K		32 KB reserved for legacy ISA devices
→	64K		54 KB reserved for legacy ISA devices

5.5 Boot


Use the Boot menu (BIOS Menu 13) to configure system boot options.

BIOS Menu 13: Boot

5.5.1 Boot Settings Configuration

Use the **Boot Settings Configuration** menu (**BIOS Menu 14**) to configure advanced system boot options.

BIOS Menu 14: Boot Settings Configuration

Quick Boot [Enabled]

Use the **Quick Boot** BIOS option to make the computer speed up the boot process.

Disabled No POST procedures are skipped

Enabled DEFAULT Some POST procedures are skipped to decrease

the system boot time

Quiet Boot [Enabled]

Use the Quiet Boot BIOS option to select the screen display when the system boots.

Disabled Normal POST messages displayed

Enabled DEFAULT OEM Logo displayed instead of POST messages

AddOn ROM Display Mode [Force BIOS]

Use the **AddOn ROM Display Mode** option to allow add-on ROM (read-only memory) messages to be displayed.

Force BIOS DEFAULT The system forces third party BIOS to display

during system boot.

→ Keep Current The system displays normal information during

system boot.

Bootup Num-Lock [On]

Use the **Bootup Num-Lock** BIOS option to specify if the number lock setting must be modified during boot up.

Off Does not enable the keyboard Number Lock automatically. To

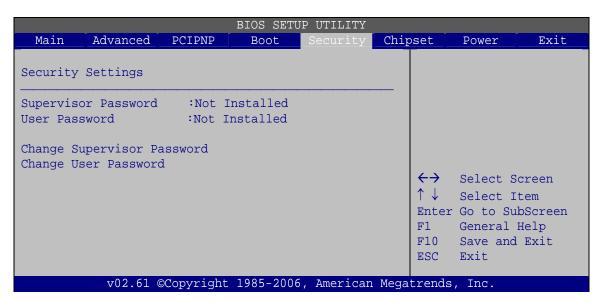
use the 10-keys on the keyboard, press the Number Lock key located on the upper left-hand corner of the 10-key pad. The

Number Lock LED on the keyboard lights up when the Number

Lock is engaged.

→ On DEFAULT

Allows the Number Lock on the keyboard to be enabled automatically when the computer system boots up. This allows the immediate use of the 10-key numeric keypad located on the right side of the keyboard. To confirm this, the Number Lock LED light on the keyboard is lit.


RTL8111CP LAN Boot [Disabled]

Use the RTL8111CP LAN Boot option to enable the Realtek RTL8111CP PCIe GbE controller to boot the system.

→	Disabled	DEFAULT	Cannot be booted from a remote system through the
			Realtek RTL8111CP PCIe GbE controller
→	Enabled		Can be booted from a remote system through the
			Realtek RTI 8111CP PCIe GbF controller

5.6 Security

Use the **Security** menu (**BIOS Menu 15**) to set system and user passwords.

BIOS Menu 15: Security

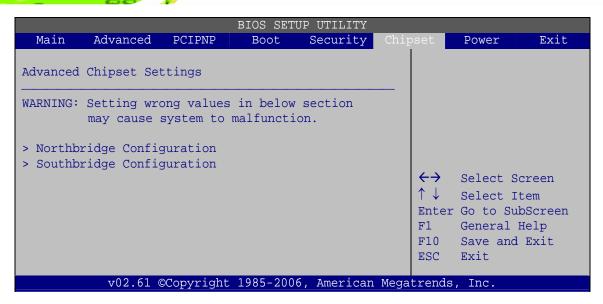
Change Supervisor Password

Use the **Change Supervisor Password** to set or change a supervisor password. The default for this option is **Not Installed**. If a supervisor password must be installed, select this field and enter the password. After the password has been added, **Install** appears next to **Change Supervisor Password**.

Change User Password

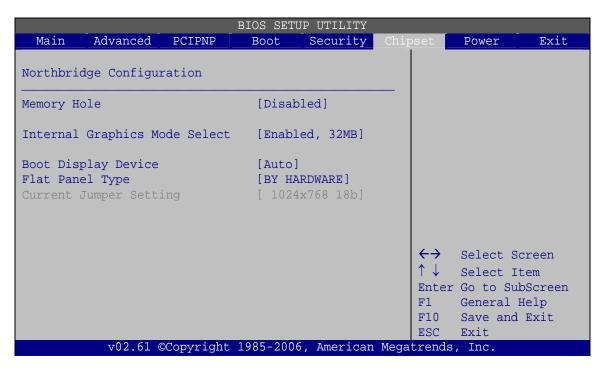
Use the **Change User Password** to set or change a user password. The default for this option is **Not Installed**. If a user password must be installed, select this field and enter the password. After the password has been added, **Install** appears next to **Change User Password**.

5.7 Chipset


Use the **Chipset** menu (**BIOS Menu 16**) to access the Northbridge and Southbridge configuration menus

WARNING!

Setting the wrong values for the Chipset BIOS selections in the Chipset BIOS menu may cause the system to malfunction.



BIOS Menu 16: Chipset

5.7.1 Northbridge Configuration

Use the **Northbridge Chipset Configuration** menu (**BIOS Menu 17**) to configure the Northbridge chipset.

BIOS Menu 17:Northbridge Chipset Configuration

Memory Hole [Disabled]

Use the **Memory Hole** option to reserve memory space between 15 MB and 16 MB for ISA expansion cards that require a specified area of memory to work properly. If an older ISA expansion card is used, please refer to the documentation that came with the card to see if it is necessary to reserve the space.

→	Disabled	DEFAULT	Memory is not reserved for ISA expansion cards
→	15 MB – 16 MB		Between 15 MB and 16 MB of memory is reserved
			for ISA expansion cards

Internal Graphics Mode Select [Enable, 32 MB]

Use the **Internal Graphic Mode Select** option to specify the amount of system memory that can be used by the Internal graphics device.

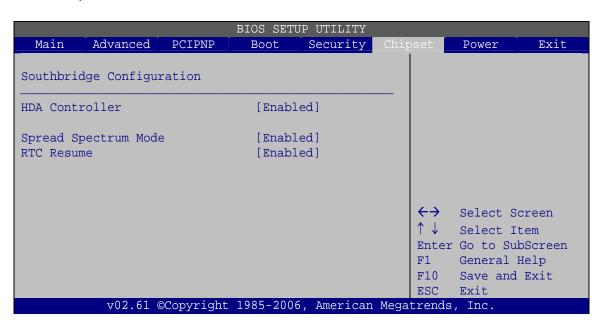
→	Disable		
→	Enable, 32 MB	DEFAULT	32 MB of memory used by internal graphics device
→	Enable, 64 MB		64 MB of memory used by internal graphics device
→	Enable, 128 MB		128 MB of memory used by internal graphics
			device

Boot Display Device [Auto]

Use the **Boot Display Device** BIOS feature to determine what displays are used. Dual display functionality is enabled here. Dual display configuration options are listed below:

•	Auto	DEFAULT
	CRT	

- TV
- HDMI
- LVDS


Flat Panel Type

Use the **Flat Panel Type** to determine the LCD panel resolution. Configuration options are listed below:

- 640 x 480 18b
- 800 x 600 18b
- 1024 x 768 18b
- 1280 x 768 24b
- 1280 x 1024 48b
- 1600 x 1200 48b
- BY HARDWARE

5.7.2 Southbridge Configuration

Use the **Southbridge Configuration** menu (**BIOS Menu 18**) to configure the Southbridge chipset.

BIOS Menu 18:Southbridge Chipset Configuration

HDA Controller [Enabled]

Use the HDA Controller option to enable or disable the High Definition Audio controller.

→ Enabled DEFAULT The onboard High Definition Audio controller

automatically detected and enabled

→ **Disabled** The onboard High Definition Audio controller is disabled

RTC Resume [Disabled]

Use the **RTC Resume** option to specify the time the system should be roused from a suspended state.

Disabled DEFAULT The real time clock (RTC) cannot generate a wake

event

Enabled If selected, the following appears with values that

can be selected:

RTC Alarm Date (Days)

System Time

After setting the alarm, the computer turns itself on from a suspend state when the alarm goes off.

Spread Spectrum [Enabled]

Use the **Spread Spectrum** option to reduce the EMI. Excess EMI is generated when the system clock generator pulses have extreme values. Spreading the pulse spectrum modulates changes in the extreme values from spikes to flat curves, thus reducing the EMI. This benefit may in some cases be outweighed by problems with timing-critical devices, such as a clock-sensitive SCSI device.

→ Disabled EMI not reduced

→ Enabled DEFAULT EMI reduced

5.8 Exit

Use the **Exit** menu (**BIOS Menu 19**) to load default BIOS values, optimal failsafe values and to save configuration changes.

BIOS SETUP UTILITY									
Main	Advanced	PCIPNP	Boot	Security	Chir	pset	Power	Exit	
Exit Options						Exit system setup after saving the changes.			
Save Changes and Exit Discard Changes and Exit Discard Changes						F10 key can be used for this operation			
-	imal Default Isafe Defau					$\uparrow \downarrow$	Save and	tem bScreen Help	
	v02.61 @	Copyright	1985-2006,	American	Mega	trends	, Inc.		

BIOS Menu 19:Exit

Save Changes and Exit

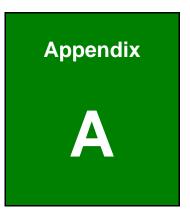
Use the **Save Changes and Exit** option to save the changes made to the BIOS options and to exit the BIOS configuration setup program.

Discard Changes and Exit

Use the **Discard Changes and Exit** option to exit the BIOS configuration setup program without saving the changes made to the system.

Discard Changes

Use the **Discard Changes** option to discard the changes and remain in the BIOS configuration setup program.


Load Optimal Defaults

Use the **Load Optimal Defaults** option to load the optimal default values for each of the parameters on the Setup menus. **F9 key can be used for this operation.**

Load Failsafe Defaults

Use the **Load Failsafe Defaults** option to load failsafe default values for each of the parameters on the Setup menus. **F8 key can be used for this operation.**

BIOS Menu Options

Below is a list of BIOS configuration options in the BIOS chapter.

System Overview	64
System Time [xx:xx:xx]	65
System Date [xx/xx/xx]	65
SATA#1 Configurations [Compatible]	67
Configure SATA as [IDE]	68
IDE Master and IDE Slave	68
Auto-Detected Drive Parameters	69
Type [Auto]	70
LBA/Large Mode [Auto]	70
Block (Multi Sector Transfer) [Auto]	71
PIO Mode [Auto]	71
DMA Mode [Auto]	72
S.M.A.R.T [Auto]	73
32Bit Data Transfer [Enabled]	73
AHCI Port n [Not Detected]	74
SATA Port n [Auto]	75
S.M.A.R.T [Enabled]	75
Remote Access [Disabled]	76
Serial Port Number [COM1]	76
Base Address, IRQ [3E8h, A]	77
Serial Port Mode [115200 8,n,1]	77
Redirection After BIOS POST [Always]	77
Terminal Type [ANSI]	78
USB Configuration	78
USB Devices Enabled	79
USB 2.0 Controller [Enabled]	79
Legacy USB Support [Enabled]	79
USB2.0 Controller Mode [HiSpeed]	79
Power Supply Status [By Hardware]	80
Serial Port1 Address [3F8]	81
Serial Port1 IRQ [10]	81
Serial Port2 Address [2F8]	82

Seriai Portz IRQ [3]	82
Serial Port3 Address [3E8]	82
Serial Port3 IRQ [4]	82
Serial Port4 Address [2E8]	82
Serial Port4 IRQ [4]	83
IRQ# [Available]	84
DMA Channel# [Available]	85
Reserved Memory Size [Disabled]	85
Quick Boot [Enabled]	87
Quiet Boot [Enabled]	87
AddOn ROM Display Mode [Force BIOS]	87
Bootup Num-Lock [On]	87
RTL8111CP LAN Boot [Disabled]	88
Change Supervisor Password	89
Change User Password	89
Memory Hole [Disabled]	91
Internal Graphics Mode Select [Enable, 32 MB]	91
Boot Display Device [Auto]	91
Flat Panel Type	92
HDA Controller [Enabled]	92
RTC Resume [Disabled]	93
RTC Alarm Date (Days)	93
System Time	93
Spread Spectrum [Enabled]	93
Save Changes and Exit	94
Discard Changes and Exit	94
Discard Changes	94
Load Optimal Defaults	94
Load Failsafe Defaults	94

Appendix

B

One Key Recovery

B.1 One Key Recovery Introduction

The IEI one key recovery is an easy-to-use front end for the Norton Ghost system backup and recovery tool. The one key recovery provides quick and easy shortcuts for creating a backup and reverting to that backup or for reverting to the factory default settings.

To create the system backup the main storage device must be split into two partitions (three partitions for Linux). The first partition will be for the operating system, while the second partition will be invisible to the operating system and contain the backup made by the one key recovery software.

B.1.1 System Requirement

The partition created for recovery images must be big enough to contain both the factory default image and the user backup image. The size must be calculated before creating the partitions. Please take the following table as a reference when calculating the size of the partition.

	os	OS Image after Ghost	Compression Ratio
Windows® 7	7 GB	5 GB	70%
Windows® XPE	776 MB	560 MB	70%
Windows® CE 6.0	36 MB	28 MB	77%

Specialized tools are required to change the partition size if the operating system is already installed.

B.1.2 Supported Operating System

The recovery CD is compatible with both Microsoft Windows and Linux operating system (OS). The supported OS versions are listed below.

- Microsoft Windows
 - O Windows XP (Service Pack 2 or 3 required)
 - O Windows Vista
 - O Windows 7
 - O Windows CE 5.0
 - O Windows CE 6.0
 - O Windows XP Embedded
- Linux
 - O Fedora Core 12 (Constantine)
 - O Fedora Core 11 (Leonidas)
 - O Fedora Core 10 (Cambridge)
 - O Fedora Core 8 (Werewolf)
 - O Fedora Core 7 (Moonshine)
 - O RedHat RHEL-5.4
 - O RedHat 9 (Ghirke)
 - O Ubuntu 8.10 (Intrepid)
 - O Ubuntu 7.10 (Gutsy)
 - O Ubuntu 6.10 (Edgy)
 - O Debian 5.0 (Lenny)
 - O Debian 4.0 (Etch)
 - O SuSe 11.2
 - O SuSe 11.3

Installing unsupported OS versions may cause the recovery tool to fail.

The recovery CD can only be used with IEI products. The software will fail to run and a warning message will appear when used on non-IEI hardware.

B.2 Initial Setup Procedure for Windows

Prior to using the recovery tool to backup or restore system, a few setup procedures are required.

- Step 1: Hardware and BIOS setup
- Step 2: Create partitions
- Step 3: Build-up recovery partition
- **Step 4:** Install operating system, drivers and system applications.
- Step 5: Create factory default image

The detailed descriptions are described in the following sections.

The setup procedures described below are for Microsoft Windows operating system users. For Linux system, most setup procedures are the same with Microsoft Windows except for several steps which is described in **Section B.3**.

B.2.1 Hardware and BIOS Setup

- **Step 1:** Install a hard driver or SSD in the NANO-GM45A2. An unformatted and unpartitioned disk is recommended.
- Step 2: Connect an optical disk drive to the NANO-GM45A2 and insert the recovery CD.
- Step 3: Turn on the system.
- Step 4: Press the <DELETE> key as soon as the system is turned on to enter the BIOS.
- Step 5: Select the connected optical disk drive as the 1st boot device. (Boot → Boot
 Device Priority → 1st Boot Device).
- **Step 6:** Press F10 then "Y" to save changes and restart the computer. Continue to the next section for instructions on partitioning the internal storage.

B.2.2 Create Partitions

- Step 1: When prompted, press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient.
- **Step 2:** The recovery tool setup menu is shown as below.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.
```

Figure B-1: Recovery Tool Setup Menu

Step 3: Type <**5**> and press <Enter>.

```
2. X:\I386\system32\cmd.exe

1. Ghost Execution
2. System Configuration For Windows
3. System Configuration For Linux
4. Exit
5. CMD
Type the number to print text. 5
```

Figure B-2: Command Mode

Step 4: The command prompt window appears. Type the following commands (marked in red) to create two partitions. One is for the OS installation; the other is for saving recovery files and images which will be an invisible partition.

```
system32>diskpart

DISKPART>list vol

DISKPART>sel disk 0

DISKPART>create part pri size= ____

DISKPART>assign letter=N

DISKPART>create part pri size= ____

DISKPART>create part pri size= ____

DISKPART>assign letter=F

DISKPART>exit

system32>format N: /fs:ntfs /q /y

system32>format F: /fs:ntfs /q /v:Recovery /y

system32>exit
```


Figure B-3: Partition Creation Commands

Use the following commands to check if the partitions were created successfully.

```
X:\I386\SYSTEM32\diskpart

Microsoft DiskPart version 5.2.3790.1830
Copyright (C) 1999-2001 Microsoft Corporation.
On computer: MININT-JUC

DISKPART\ sel disk 0

Disk 0 is now the selected disk.

DISKPART\ list part

Partition ### Type Size Offset

Partition 1 Primary 2000 MB 32 KB
Partition 2 Primary 1804 MB 2000 MB

DISKPART\ exit
```

Step 5: Press any key to exit the recovery tool and automatically reboot the system. Please continue to the following procedure: Build-up Recovery Partition.

B.2.3 Build-up Recovery Partition

- **Step 1:** Press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient.
- **Step 2:** When the recovery tool setup menu appears, type <**2**> and press <Enter>.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.2
```

Figure B-4: System Configuration for Windows

Step 3: The Symantec Ghost window appears and starts configuring the system to build-up a recovery partition. In this process, the partition which is created for

recovery files in **Section B.2.2** is hidden and the recovery tool is saved in this partition.

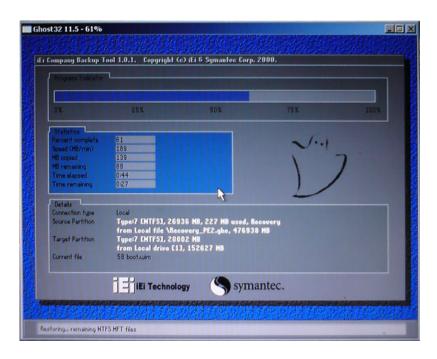


Figure B-5: Build-up Recovery Partition

Step 4: After completing the system configuration, press any key in the following window to reboot the system.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.2
Press any key to continue . . . _
```

Figure B-6: Press any key to continue

Step 5: Eject the recovery CD.

B.2.4 Create Factory Default Image

Before creating the factory default image, please configure the system to a factory default environment, including OS, drivers and application installations.

To create a factory default image, please follow the steps below.

Step 1: Turn on the system. When the following screen displays (Figure B-7), press the <F3> key to access the recovery tool. The message will display for 10 seconds, please press F3 before the system boots into the operating system.

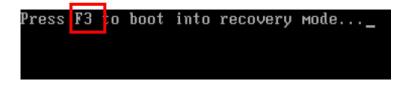


Figure B-7: Press F3 to Boot into Recovery Mode

Step 2: The recovery tool menu appears. Type <4> and press <Enter>. (Figure B-8)

```
X:\Windows\System32\cmd.exe

1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:4
```

Figure B-8: Recovery Tool Menu

Step 3: The About Symantec Ghost window appears. Click **OK** button to continue.

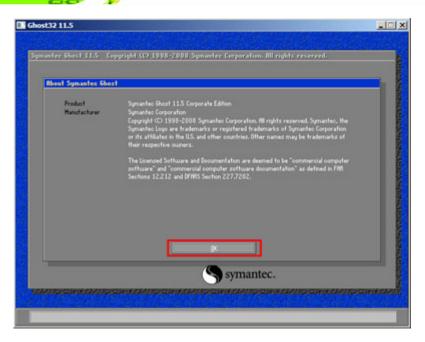


Figure B-9: About Symantec Ghost Window

Step 4: Use mouse to navigate to the option shown below (**Figure B-10**).

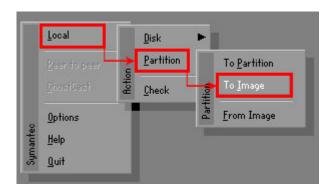


Figure B-10: Symantec Ghost Path

Step 5: Select the local source drive as shown in **Figure B-11**. Then click OK.

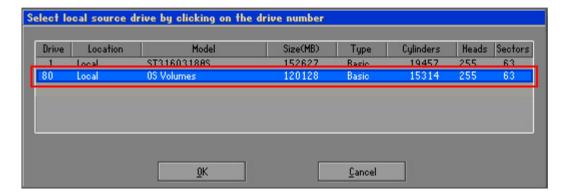


Figure B-11: Select a Local Source Drive

Step 6: Select a source partition from basic drive as shown in Figure B-12. Then click OK.

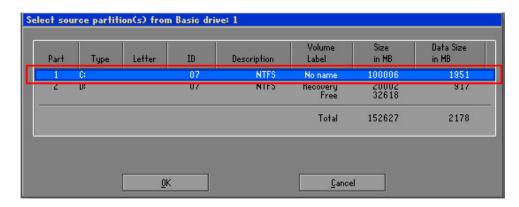


Figure B-12: Select a Source Partition from Basic Drive

Step 7: Select 1.2: [Recovery] NTFS drive and enter a file name called iei

(Figure B-13). Click Save. The factory default image will then be saved in the selected recovery drive and named IEI.GHO.

WARNING:

The file name of the factory default image must be iei.GHO.

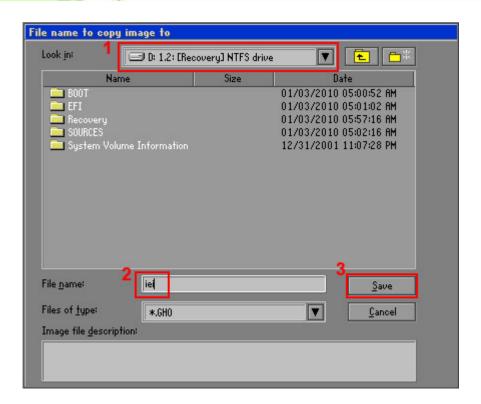


Figure B-13: File Name to Copy Image to

Step 8: When the Compress Image screen in Figure B-14 prompts, click High to make the image file smaller.

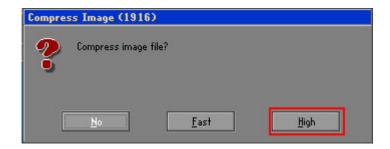


Figure B-14: Compress Image

Step 9: The Proceed with partition image creation window appears, click **Yes** to continue.

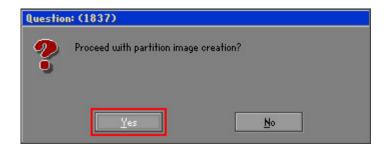


Figure B-15: Image Creation Confirmation

Step 10: The Symantec Ghost starts to create the factory default image (Figure B-16).

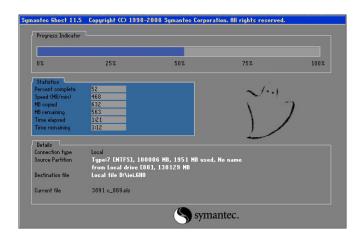


Figure B-16: Image Creation Complete

Step 11: When the image creation completes, a screen prompts as shown in Figure B-18.

Click Continue and close the Ghost window to exit the program.

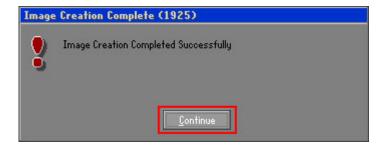


Figure B-17: Image Creation Complete

Step 12: The recovery tool main menu window is shown as below. Press any key to reboot the system.

```
EX:\Windows\System32\cmd.exe

1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:4

Done!
Press any key to continue . . . _
```

Figure B-18: Press Any Key to Continue

B.3 Initial Setup Procedure for Linux

The initial setup procedures for Linux system are mostly the same with the procedure for Microsoft Windows. Please follow the steps below to setup recovery tool for Linux OS.

- Step 1: Hardware and BIOS setup. Refer to Section B.2.1.
- Step 2: Install Linux operating system. Make sure to install GRUB (v0.97 or earlier)

 MBR type and Ext3 partition type.

NOTE:

If the Linux OS is not installed with GRUB (v0.97 or earlier) and Ext3, the Symantec Ghost may not function properly.

While installing Linux OS, please create two partitions:

- Partition 1: /
- Partition 2: **SWAP**

NOTE:

Please reserve enough space for partition 3 for saving recovery images.

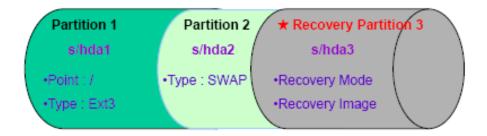


Figure B-19: Partitions for Linux

Step 3: Create a recovery partition. Insert the recovery CD into the optical disk drive.
Follow Step 1 ~ Step 3 described in Section B.2.2. Then type the following commands (marked in red) to create a partition for recovery images.

system32>diskpart

DISKPART>list vol

DISKPART>sel disk 0

DISKPART>create part pri size= ____

DISKPART>assign letter=N

DISKPART>exit

system32>format N: /fs:ntfs /q /v:Recovery /y

system32>exit

Step 4: Build-up recovery partition. Press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient. When the recovery tool setup menu appears, type <3> and press <Enter> (Figure B-20). The Symantec Ghost window appears and starts configuring the system to build-up a recovery partition. After completing the system configuration, press any key to reboot the system. Eject the recovery CD.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.3
```

Figure B-20: System Configuration for Linux

Step 5: Access the recovery tool main menu by modifying the "menu.lst". To first access the recovery tool main menu, the menu.lst must be modified. In Linux system, enter Administrator (root). When prompt appears, type:

cd /boot/grub

vi menu.lst

```
Fedora release 9 (Sulphur)
Kernel 2.6.25-14.fc9.i686 on an i686 (tty2)
localhost login: root
Password:
[root@localhost ~]# cd /boot/grub/
[root@localhost grub]# vi menu.lst _
```

Figure B-21: Access menu.lst in Linux (Text Mode)

Step 6: Modify the menu.lst as shown below.

Type command:

```
title Recovery Partition
root (hd0,2)
makeactive
chainloader +1
```

Step 7: The recovery tool menu appears. (**Figure B-22**)

```
1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:
```

Figure B-22: Recovery Tool Menu

Step 8: Create a factory default image. Follow Step 2 ~ Step 12 described in SectionB.2.4 to create a factory default image.

B.4 Recovery Tool Functions

After completing the initial setup procedures as described above, users can access the recovery tool by pressing <**F3**> while booting up the system. The main menu of the recovery tool is shown below.

Figure B-23: Recovery Tool Main Menu

The recovery tool has several functions including:

- Factory Restore: Restore the factory default image (iei.GHO) created in Section B.2.4.
- 2. **Backup system**: Create a system backup image (iei_user.GHO) which will be saved in the hidden partition.
- 3. Restore your last backup: Restore the last system backup image
- 4. **Manual**: Enter the Symantec Ghost window to configure manually.
- 5. **Quit**: Exit the recovery tool and restart the system.

WARNING:

Please do not turn off the system power during the process of system recovery or backup.

WARNING:

All data in the system will be deleted during the system recovery. Please backup the system files before restoring the system (either Factory Restore or Restore Backup).

B.4.1 Factory Restore

To restore the factory default image, please follow the steps below.

- **Step 9:** Type <1> and press <**Enter**> in the main menu.
- **Step 10:** The Symantec Ghost window appears and starts to restore the factory default. A factory default image called **iei.GHO** is created in the hidden Recovery partition.

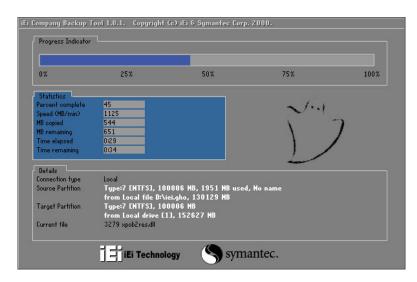


Figure B-24: Restore Factory Default

Step 11: The screen is shown as in **Figure B-25** when completed. Press any key to reboot the system.


```
X:\Windows\System32\cmd.exe

1. Factory Restore

2. Backup system

3. Restore your last backup.

4. Manual

5. Quit
Please type the number to select and then press Enter:1

Recovery complete!

Press any key to continue . . . _
```

Figure B-25: Recovery Complete Window

B.4.2 Backup System

To backup the system, please follow the steps below.

Step 12: Type **<2>** and press **<Enter>** in the main menu.

Step 13: The Symantec Ghost window appears and starts to backup the system. A backup image called **iei_user.GHO** is created in the hidden Recovery partition.

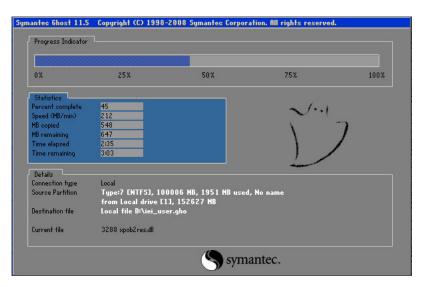


Figure B-26: Backup System

Step 14: The screen is shown as in Figure B-25 when system backup is completed.

Press any key to reboot the system.

Figure B-27: System Backup Complete Window

B.4.3 Restore Your Last Backup

To restore the last system backup, please follow the steps below.

Step 15: Type <**3**> and press <**Enter**> in the main menu.

Step 16: The Symantec Ghost window appears and starts to restore the last backup image (iei_user.GHO).

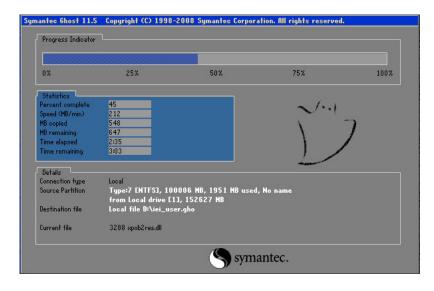


Figure B-28: Restore Backup

Step 17: The screen is shown as in Figure B-25 when backup recovery is completed.

Press any key to reboot the system.


```
X:\Windows\System32\cmd.exe

1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:3

Recovery complete!
Press any key to continue . . . _
```

Figure B-29: Restore System Backup Complete Window

B.4.4 Manual

To restore the last system backup, please follow the steps below.

Step 18: Type **<4>** and press **<Enter>** in the main menu.

Step 19: The Symantec Ghost window appears. Use the Ghost program to backup or recover the system manually.

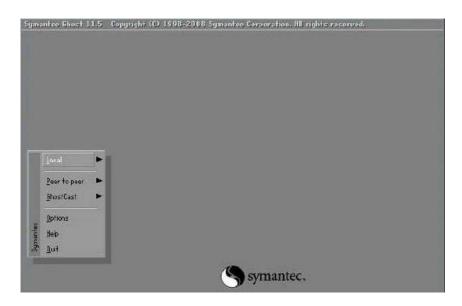


Figure B-30: Symantec Ghost Window

Step 20: When backup or recovery is completed, press any key to reboot the system.

Appendix

C

Terminology

AC '97	Audio Codec 97 (AC'97) refers to a codec standard developed by
--------	--

Intel® in 1997.

ACPI Advanced Configuration and Power Interface (ACPI) is an OS-directed

configuration, power management, and thermal management interface.

AHCI Advanced Host Controller Interface (AHCI) is a SATA Host controller

register-level interface.

ATA The Advanced Technology Attachment (ATA) interface connects

storage devices including hard disks and CD-ROM drives to a

computer.

APM The Advanced Power Management (APM) application program

interface (API) enables the inclusion of power management in the

BIOS.

ARMD An ATAPI Removable Media Device (ARMD) is any ATAPI device that

supports removable media, besides CD and DVD drives.

ASKIR Amplitude Shift Keyed Infrared (ASKIR) is a form of modulation that

represents a digital signal by varying the amplitude ("volume") of the

signal. A low amplitude signal represents a binary 0, while a high

amplitude signal represents a binary 1.

BIOS The Basic Input/Output System (BIOS) is firmware that is first run when

the computer is turned on and can be configured by the end user

CODEC The Compressor-Decompressor (CODEC) encodes and decodes

digital audio data on the system.

CMOS Complimentary metal-oxide-conductor is a type of integrated circuit

used in chips like static RAM and microprocessors.

COM COM is used to refer to serial ports. Serial ports offer serial

communication to expansion devices. The serial port on a personal

computer is usually a male DE-9 connector.

DAC The Digital-to-Analog Converter (DAC) converts digital signals to

analog signals.

DDR Double Data Rate refers to a data bus transferring data on both the

rising and falling edges of the clock signal.

DMA Direct Memory Access (DMA) enables some peripheral devices to

bypass the system processor and communicate directly with the

system memory.

DIMM Dual Inline Memory Modules are a type of RAM that offer a 64-bit data

bus and have separate electrical contacts on each side of the module.

EHCI The Enhanced Host Controller Interface (EHCI) specification is a

register-level interface description for USB 2.0 Host Controllers.

FSB The Front Side Bus (FSB) is the bi-directional communication channel

between the processor and the Northbridge chipset.

GbE Gigabit Ethernet (GbE) is an Ethernet version that transfers data at 1.0

Gbps and complies with the IEEE 802.3-2005 standard.

GPIO General purpose input

IrDA Infrared Data Association (IrDA) specify infrared data transmission

protocols used to enable electronic devices to wirelessly communicate

with each other.

L1 Cache The Level 1 Cache (L1 Cache) is a small memory cache built into the

system processor.

L2 Cache The Level 2 Cache (L2 Cache) is an external processor memory cache.

LVDS Low-voltage differential signaling (LVDS) is a dual-wire, high-speed

differential electrical signaling system commonly used to connect LCD

displays to a computer.

MAC The Media Access Control (MAC) protocol enables sev	everal terminals or
---	---------------------

network nodes to communicate in a LAN, or other multipoint networks.

PCIe PCI Express (PCIe) is a communications bus that uses dual data lines

for full-duplex (two-way) serial (point-to-point) communications between

the SBC components and/or expansion cards and the SBC chipsets.

Each line has a 2.5 Gbps data transmission rate and a 250 MBps

sustained data transfer rate.

POST The Power-on Self Test (POST) is the pre-boot actions the system

performs when the system is turned-on.

QVGA Quarter Video Graphics Array (QVGA) refers to a display with a

resolution of 320 x 240 pixels.

RAM Random Access Memory (RAM) is a form of storage used in computer.

RAM is volatile memory, so it loses its data when power is lost. RAM has very fast data transfer rates compared to other storage like hard

drives.

SATA Serial ATA (SATA) is a serial communications bus designed for data

transfers between storage devices and the computer chipsets. The

SATA Revision 1.x bus has transfer speeds up to 1.5 Gbps and the

SATA Revision 2.x bus has data transfer speeds of up to 3.0 Gbps.

S.M.A.R.T Self Monitoring Analysis and Reporting Technology (S.M.A.R.T) refers

to automatic status checking technology implemented on hard disk

drives.

UART Universal Asynchronous Receiver-transmitter (UART) is responsible for

asynchronous communications on the system and manages the

system's serial communication (COM) ports.

UHCI The Universal Host Controller Interface (UHCI) specification is a

register-level interface description for USB 1.1 Host Controllers.

USB The Universal Serial Bus (USB) is an external bus standard for

interfacing devices. USB 1.1 supports 12 Mbps data transfer rates,

while USB 2.0 supports 480 Mbps data transfer rates.

VGA The Video Graphics Array (VGA) is a graphics display system

developed by IBM.

Appendix

Watchdog Timer

The following discussion applies to DOS environment. IEI support is contacted or the IEI website visited for specific drivers for more sophisticated operating systems, e.g., Windows and Linux.

The Watchdog Timer is provided to ensure that standalone systems can always recover from catastrophic conditions that cause the CPU to crash. This condition may have occurred by external EMI or a software bug. When the CPU stops working correctly, Watchdog Timer either performs a hardware reset (cold boot) or a Non-Maskable Interrupt (NMI) to bring the system back to a known state.

A BIOS function call (INT 15H) is used to control the Watchdog Timer:

INT 15H:

AH – 6FH Sub-function:				
AL – 2:	Sets the Watchdog Timer's period.			
BL:	Time-out value (Its unit-second is dependent on the item "Watchdog			
	Timer unit select" in CMOS setup).			

Table D-1: AH-6FH Sub-function

Call sub-function 2 to set the time-out period of Watchdog Timer first. If the time-out value is not zero, the Watchdog Timer starts counting down. While the timer value reaches zero, the system resets. To ensure that this reset condition does not occur, calling sub-function 2 must periodically refresh the Watchdog Timer. However, the Watchdog timer is disabled if the time-out value is set to zero.

A tolerance of at least 10% must be maintained to avoid unknown routines within the operating system (DOS), such as disk I/O that can be very time-consuming.

When exiting a program it is necessary to disable the Watchdog Timer, otherwise the system resets.

Example program:

```
; INITIAL TIMER PERIOD COUNTER
W_LOOP:
        MOV
                 AX, 6F02H
                                ;setting the time-out value
        MOV
                 BL, 30
                                     ;time-out value is 48 seconds
        INT
                  15H
; ADD THE APPLICATION PROGRAM HERE
        CMP
                  EXIT_AP, 1
                                     ;is the application over?
        JNE
                  W_LOOP
                                ;No, restart the application
                                ;disable Watchdog Timer
        MOV
                AX, 6F02H
        MOV
                BL, 0
        INT
                 15H
; EXIT ;
```


Appendix

Е

Compatibility

The compatible items described here have been tested by the IEI R&D team and found to be compatible with the NANO-GM45A2.

E.1 Compatible Operating Systems

The following operating systems have been successfully run on the NANO-GM45A2.

- Microsoft Windows 7 (Beta)
- Microsoft Windows Vista Ultimate (32-bit)
- Microsoft Windows Vista Ultimate (64-bit)
- Microsoft Windows XP with SP2 (32-bit)
- Microsoft Windows XP with SP2 (64-bit)
- Microsoft Server 2008 (32-bit)
- Microsoft Server 2008 (64-bit) (Chinese version)
- Microsoft Server 2003 (32-bit)
- Microsoft Server 2003 (64-bit) (Chinese version)
- Microsoft Windows 2000 with SP4
- Microsoft XPE-POS (32-bit)
- Microsoft DOS 6.22
- Linux (Mandriva 2009)
- Linux (ubuntu 8.1.0)
- Linux (openSuSE 11.0)
- Linux (Fedora 9)

E.2 Compatible Processors

The following Socket P processors have been successfully tested on the NANO-GM45A2.

CPU	Model	Clock	FSB	Architecture
	Number	Speed		
Intel® Core™2 Duo	P7350	2.00 GHz	1066 MHz	45 nm
Intel® Core™2 Duo	P8700	2.53 GHz	1066 MHz	45 nm
Intel® Core™2 Duo	T7500	2.20 GHz	800 MHz	65 nm
Intel® Core™2 Duo	T7700	2.40 GHz	800 MHz	65 nm
Intel® Core™2 Duo	T7800	2.60 GHz	800 MHz	45 nm
Intel® Core™2 Duo	T8300	2.40 GHz	800 MHz	45 nm
Intel® Core™2 Duo	T9400	2.53 GHz	1066 MHz	45 nm
Intel® Core™2 Duo	T9500	2.60 GHz	800 MHz	45 nm
Intel® Core™2 Duo	T9550	2.66 GHz	1066 MHz	45 nm
Intel® Core™2 Duo	T9600	2.80 GHz	1066 MHz	45 nm

E.3 Compatible Memory Modules

NOTE

The memory modules listed below have been tested on the NANO-GM45A2 other memory modules that comply with the specifications may also work on the NANO-GM45A2 but have not been tested.

The following DDR3 memory modules have been successfully tested on the NANO-GM45A2.

Manufacturer	Capacity	Speed	
InnoDisk	1.0 GB	1066 MHz	
InnoDisk	2.0 GB	1066 MHz	
InnoDisk	1.0 GB	1333 MHz	

Kingston	1.0 GB	1066 MHz
Samsung	1.0 GB	1066 MHz
Transcend	1.0 GB	1066 MHz
Transcend	2.0 GB	1066 MHz
Transcend	2.0 GB	1333 MHz

Appendix

Hazardous Materials Disclosure

F.1 Hazardous Material Disclosure Table for IPB Products Certified as RoHS Compliant Under 2002/95/EC Without Mercury

The details provided in this appendix are to ensure that the product is compliant with the Peoples Republic of China (China) RoHS standards. The table below acknowledges the presences of small quantities of certain materials in the product, and is applicable to China RoHS only.

A label will be placed on each product to indicate the estimated "Environmentally Friendly Use Period" (EFUP). This is an estimate of the number of years that these substances would "not leak out or undergo abrupt change." This product may contain replaceable sub-assemblies/components which have a shorter EFUP such as batteries and lamps. These components will be separately marked.

Please refer to the table on the next page.

Part Name	Toxic or Hazardous Substances and Elements					
	Lead	Mercury	Cadmium	Hexavalent	Polybrominated	Polybrominated
	(Pb)	(Hg)	(Cd)	Chromium	Biphenyls	Diphenyl Ethers
				(CR(VI))	(PBB)	(PBDE)
Housing	х	О	О	О	О	X
Display	Х	О	О	О	0	Х
Printed Circuit	Х	О	О	О	0	Х
Board						
Metal	Х	О	О	О	О	0
Fasteners						
Cable	Х	О	О	О	0	X
Assembly						
Fan Assembly	Х	О	О	О	0	X
Power Supply	Х	О	О	0	0	Х
Assemblies						
Battery	0	О	О	О	О	О

- O: This toxic or hazardous substance is contained in all of the homogeneous materials for the part is below the limit requirement in SJ/T11363-2006
- X: This toxic or hazardous substance is contained in at least one of the homogeneous materials for this part is above the limit requirement in SJ/T11363-2006

此附件旨在确保本产品符合中国 RoHS 标准。以下表格标示此产品中某有毒物质的含量符合中国 RoHS 标准规定的限量要求。

本产品上会附有"环境友好使用期限"的标签,此期限是估算这些物质"不会有泄漏或突变"的年限。本产品可能包含有较短的环境友好使用期限的可替换元件,像是电池或灯管,这些元件将会单独标示出来。

部件名称	有毒有害物质或元素					
	铅	汞	镉	六价铬	多溴联苯	多溴二苯醚
	(Pb)	(Hg)	(Cd)	(CR(VI))	(PBB)	(PBDE)
壳体	Х	0	0	0	0	X
显示	Х	0	0	0	0	X
印刷电路板	Х	0	0	0	0	Х
金属螺帽	Х	0	0	0	0	0
电缆组装	Х	0	0	0	0	Х
风扇组装	Х	0	0	0	0	Х
电力供应组装	Х	0	0	О	0	Х
电池	0	0	0	0	0	0

O: 表示该有毒有害物质在该部件所有物质材料中的含量均在 SJ/T11363-2006 标准规定的限量要求以下。

X: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出 SJ/T11363-2006 标准规定的限量要求。